ESTIMATIONS OF THE NORM OF THE POWERS OF THE OPERATOR GENERATED BY IRRATIONAL ROTATION
Abstract
About the Authors
A. V. AntonevichBelarus
D. Sc. (Physics and Mathematics), Professor
Ali A. Shukur
Belarus
Postgraduate student
References
1. Antonevich A. B. Linear functional equation. Operator approach. Berlin, Birkhauser, 1996. 187 р. doi.org/10.1007/978-3-0348-8977-3.
2. Shukur Ali A. Behavior of the norms of the powers of the operator generated by rational rotation. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriia 1. Fizika. Matematika. Informatika. [Bulletin of the Belarusian State University. Series 1. Physics. Mathematics. Informatics], 2016, no. 2, pp. 110–115. (in Russian)
3. Weyl G. Selected Works. Mathematics. Theoretical physics. Moscow, Nauka Publ., 1984. 510 p. (in Russian)
4. Kornfeld I., Sinai Ya. G., Fomin S. V. Ergodic theory. Moscow, Nauka Publ., 1980. 384 p. (in Russian)
5. Kachurovskii A., Sedalischev V. Constants in estimates for the rates of convergence in von Neumann’s and Birkhoff’s ergodic theorems. Matematicheskii sbornik [Sbornik: Mathematics], 2011, vol. 202, no. 8, pp. 1105–1125. doi.org/10.1070/sm2011v202n08abeh004180.
6. Tomilov Y., Zemanek Ja. A new way of constructing examples in operator ergodic theory. Mathematical Proceedings of the Cambridge Philosophical Society, 2004, vol. 137, pp. 209–225. doi.org/10.1017/s0305004103007436.
7. Bermudez T., Gonzalez M., Mbekhta M. Operators with an ergodic power. Studia Mathematica, 2000, vol. 141, pp. 201–208.
8. Gura A. A. Homological equations and topological properties of S1-extensions over an ergodic rotation of the circle. Matematicheskie Zametki [Mathematical Notes of the Academy of Sciences of the USSR], 1978, vol. 23, no. 3, pp. 251–255. doi.org/10.1007/BF01651441.
9. Anosov D. V. On an additive functional homology equation connected with an ergodic rotation of the circle. Izvestiya Akademii Nauk SSSR – Seriya Matematicheskaya [Mathematics of the USSR – Izvestiya], 1973, vol. 7, no. 6, pp. 1257–1271. doi.org/10.1070/im1973v007n06abeh002086.
10. Teube Cyrille Mbainaissem, Serine Alou Lo, Moussa Ould Ahmed Salem. On reducibility of the weighted composition operators. Problemy fiziki, matematiki i tehniki [Problems of Physics, Mathematics and Technology], 2015, vol. 23, no. 2, pp. 75–82. (in Russian)
11. Aleksandrov P. S. (ed.) Hilbert’s problems. Moscow, Nauka Publ., 1969. 240 p. (in Russian)
12. Gordon A. Ya. Sufficient condition for unsolvability of the additive functional homological equation connected with the ergodic rotation of a circle. Functional Analysis and Its Applications, 1975, vol. 9, no. 4, pp. 334–336. doi.org/10.1007/BF01075885.
13. Gelfond A. O. Calculus of finite differences. Moscow, Nauka Publ., 1967. 375 p. (in Russian)
14. Shidlovskii А. Transcendent numbers. Moscow, Nauka Publ., 1987. 448 p. (in Russian)