Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

ESTIMATIONS OF THE NORM OF THE POWERS OF THE OPERATOR GENERATED BY IRRATIONAL ROTATION

Abstract

In this article we consider weighted shift operators generated by irrational rotation. The descreption of the norm of the powers of those operators depending on the properties of the cofficients of the mentioned operators and on the arithmeticals properties of the irrational number yielding an angle of rotation is given.

About the Authors

A. V. Antonevich
Belarusian State University
Belarus
D. Sc. (Physics and Mathematics), Professor


Ali A. Shukur
Belarusian State University
Belarus
Postgraduate student


References

1. Antonevich A. B. Linear functional equation. Operator approach. Berlin, Birkhauser, 1996. 187 р. doi.org/10.1007/978-3-0348-8977-3.

2. Shukur Ali A. Behavior of the norms of the powers of the operator generated by rational rotation. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriia 1. Fizika. Matematika. Informatika. [Bulletin of the Belarusian State University. Series 1. Physics. Mathematics. Informatics], 2016, no. 2, pp. 110–115. (in Russian)

3. Weyl G. Selected Works. Mathematics. Theoretical physics. Moscow, Nauka Publ., 1984. 510 p. (in Russian)

4. Kornfeld I., Sinai Ya. G., Fomin S. V. Ergodic theory. Moscow, Nauka Publ., 1980. 384 p. (in Russian)

5. Kachurovskii A., Sedalischev V. Constants in estimates for the rates of convergence in von Neumann’s and Birkhoff’s ergodic theorems. Matematicheskii sbornik [Sbornik: Mathematics], 2011, vol. 202, no. 8, pp. 1105–1125. doi.org/10.1070/sm2011v202n08abeh004180.

6. Tomilov Y., Zemanek Ja. A new way of constructing examples in operator ergodic theory. Mathematical Proceedings of the Cambridge Philosophical Society, 2004, vol. 137, pp. 209–225. doi.org/10.1017/s0305004103007436.

7. Bermudez T., Gonzalez M., Mbekhta M. Operators with an ergodic power. Studia Mathematica, 2000, vol. 141, pp. 201–208.

8. Gura A.  A. Homological equations and topological properties of S1-extensions over an ergodic rotation of the circle. Matematicheskie Zametki [Mathematical Notes of the Academy of Sciences of the USSR], 1978, vol. 23, no. 3, pp. 251–255. doi.org/10.1007/BF01651441.

9. Anosov D. V. On an additive functional homology equation connected with an ergodic rotation of the circle. Izvestiya Akademii Nauk SSSR – Seriya Matematicheskaya [Mathematics of the USSR – Izvestiya], 1973, vol. 7, no. 6, pp. 1257–1271. doi.org/10.1070/im1973v007n06abeh002086.

10. Teube  Cyrille Mbainaissem, Serine  Alou Lo, Moussa  Ould Ahmed Salem. On reducibility of the weighted composition operators. Problemy fiziki, matematiki i tehniki [Problems of Physics, Mathematics and Technology], 2015, vol. 23, no. 2, pp. 75–82. (in Russian)

11. Aleksandrov P. S. (ed.) Hilbert’s problems. Moscow, Nauka Publ., 1969. 240 p. (in Russian)

12. Gordon A. Ya. Sufficient condition for unsolvability of the additive functional homological equation connected with the ergodic rotation of a circle. Functional Analysis and Its Applications, 1975, vol. 9, no. 4, pp. 334–336. doi.org/10.1007/BF01075885.

13. Gelfond A. O. Calculus of finite differences. Moscow, Nauka Publ., 1967. 375 p. (in Russian)

14. Shidlovskii А. Transcendent numbers. Moscow, Nauka Publ., 1987. 448 p. (in Russian)


Review

Views: 906


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)