MODEL OF MASSIVE PULSATING SPHERE AS AN EXACT SOLUTION OF THE HAMILTONIAN SELF RECIPROCAL DYNAMICS EQUATIONS
Abstract
About the Author
L. M. TomilchikBelarus
Corresponding Member, D. Sc. (Physics and Mathematics), Professor
References
1. Born M. A suggestion for unifying quantum theory and relativity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1938, vol. 165, no. 921, pp. 291–303. doi.org/10.1098/rspa.1938.0060.
2. Born M. Reciprocity Theory of Elementary Particles. Reviews of Modern Physics, 1949, vol. 21, no. 3, pp. 463–473. doi.org/10.1103/revmodphys.21.463.
3. Low S. G. Reciprocal relativity of noninertial frames and the quapletic group. Foundations of Physics, 2006, vol. 36, no. 7, pp. 1036–1069. doi.org/10.1007/s10701-006-9051-2.
4. Morgan S. A modern Approach to Born Reciprocity. University of Tasmania, 2010.
5. Bolognesi S. A cosmology of trans-Plankian theory and dark energy. International Journal of Modern Physics D, 2014, vol. 23, no. 5, pp. 1450046. doi.org/10.1142/s0218271814500461.
6. Bolognesi S. Born Reciprocity and Cosmic Accelarations. Ortiz Miranda L. (ed.) Advances in Dark Energy Research. NY, Nova Science Publishers Inc., 2015, pp. 56–74; Arxiv: 1506.02187 v.3, hep-th.
7. Bars J. Harmonic Oscillator Revisited. Physical Review D, 2009, vol. 79, no. 4, pp. 045009. doi.org/10.1103/physrevd.79.045009.
8. Kovalski K., Rembieliński J. Relativistic massless Harmonic Oscillator. Physical Review A, 2010, vol. 81, no. 1; Arxiv: 1002.0474. doi.org/10.1103/physreva.81.012118.
9. Gibbons G. W. The Maximum Tension Principle in General Relativity. Foundations of Physics, 2002, vol. 32, no. 12, pp. 1891–1901. doi.org/10.1023/a:1022370717626.
10. Barut A. O. Complex Lorentz Group with a Real Metric: Group Structure. Journal of Mathematical Physics, 1964, vol. 5, no. 11, pp. 1652–1656. doi.org/10.1063/1.1931202.
11. Synge J. L. Classical Dynamics. Moscow, 1963. 531 p. (in Russian)
12. Tomilchik L. M. Reciprocal invariant, maximum tension principle, and the Lorentz complex group as the symmetry of gravitational interaction. Doklady Natsional’noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2016, vol. 60, no. 1, pp. 41–48. (in Russian)
13. Barrow J. D., Gibbons G. W. Maximal Tension: with and without a cosmological constant. Monthly Notices of the Royal Astronomical Society, 2014, vol. 446, no. 4, pp. 3874–3877. doi.org/ 10.1093/mnras/stu2378; Arxiv: 1408.1820 v3, gr – qc. Dec. 2014.
14. Moshinski M., Szczepaniak A. The Dirac Oscillator. Journal of Physics A: Mathematical and General, 1989, vol. 22, no. 17, pp. L817–L819. doi.org/10.1088/0305-4470/22/17/002.
15. Quesne C. Supersymmetry and the Dirac Oscillator. International Journal of Modern Physics A, 1991, vol. 6, no. 9, pp. 1567–1589. doi.org/10.1142/s0217751x91000836.