Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

PECULIARITIES OF MOLECULAR-GENETIC STRUCTURE OF PHAGE PF-10

Abstract

The analysis of a full nucleotide sequence of bacteriophage Pf-10 as a key constituent of biopesticide “Multiphage” has revealed that its unique genome is composed of a DNA fragment of broad range host phage Phi-S1, where the determinants governing the synthesis of early proteins are localized, and of the DNA fragment of narrow range host phage phiIBB-PF7A containing the genes responsible for the synthesis of late proteins. Low homology of individual genetic determinants and encoded amino acid sequences (namely, the genes determining the synthesis of tail proteins) with those of phages Phi-S1 or phiIBB-PF7A evidences the mutations that emerge in the course of the phage Pf-10 genome formation and are capable to affect its vital important functions.

About the Authors

T. A. Pilipchuk
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Researcher


L. N. Valentovich
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biology), Senior researcher


M. A. Titok
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
D. Sc. (Biology), Chief researcher


E. I. Kolomiets
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Corresponding Member, D. Sc. (Biology), Director


References

1. Labrie S. J., Samson J. E., Moineau S. Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 2010, vol. 8, no. 5, pp. 317–327. doi.org/10.1038/nrmicro2315.

2. Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, vol. 30, no. 15, pp. 2114–2120. doi.org/10.1093/bioinformatics/btu170.

3. Bankevich  A., Nurk  S., Antipov  D., Gurevich  A. A., Dvorkin  M., Kulikov  A. S., Lesin  V. M., Nikolenko  S. I., Pham  S., Prjibelski  A. D., Pyshkin  A. V., Sirotkin  A. V., Vyahhi  N., Tesler  G., Alekseyev  M. A., Pavel  A., Pevzner  P. A. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012, vol. 19, no. 5, pp. 455–477. doi.org/10.1089/cmb.2012.0021.

4. Lavigne R., Sun W. D., Volckaert G. PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics, 2004, vol. 20, no. 5, pp. 629–635. doi.org/10.1093/bioinformatics/btg456.

5. Solovyev  V., Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. Li R. W. (ed.). Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies, NY: Nova Science Publ., 2011, pp. 61–78.

6. ARNold, finding terminators at IGM – Web Server. Available at: http://rna.igmors.u-psud.fr/toolbox/arnold/ (accessed 9 November 2016).

7. Nikolaychik E. A., Valentovich L. N. SQ – the computer program for editing and the analysis of the biological sequences. Trudy Belorusskogo gosudarstvennogo universiteta. Fiziologicheskie, biokhimicheskie i molekuliarnye osnovy funktsionirovaniia biosistem [Works of the Belarusian State University. Physiological, biochemical and molecular bases of functioning of biosystems], 2010, vol. 5, no. 1, pp. 154–162. (in Russian)

8. Crooks  G. E., Hon  G., Chandonia  J. M., Brenner  S. E. WebLogo: a sequence logo generator. Genome  Research, 2004, vol. 14, no. 6, pp. 1188–1190. doi.org/10.1101/gr.849004.

9. Pilipchuk  T. A., Gerasimovich  A. D., Ananyeva  I. N., Kolomiets  E. I., Popov  F. A., Novik  G. I. Biopesticide ‘Multiphage’ based on phages of phytopathogenic bacteria Pseudomonas syringae and Pseudomonas fluorescens used in agriculture to control plant diseases. Mikrobnye biotekhnologii: fundamental’nye i prikladnye aspekty [Microbiological biotechnologies: fundamental and applied aspects], 2015, vol. 7, pp. 197–219. (in Russian)

10. Haq  I. U., Chaudhry  W. N., Akhtar  M. N., Andleeb  S., Qadri  I. Bacteriophages and their implications on future biotechnology: a review. Virology Journal, 2012, vol. 9, no. 1, pp. 9. doi.org/10.1186/1743-422x-9-9.

11. Kawato  Y., Yasuike  M., Nakamura  Y., Shigenobu  Y., Fujiwara  A., Sano  M., Nakai  T. Complete genome sequence analysis of two Pseudomonas plecoglossicida phages, potential therapeutic agents. Applied and Environmental Microbiology, 2015, vol. 81, no  3, pp. 874–881. doi.org/10.1128/aem.03038-14.

12. Kelln  R. A., Warren  R. A. J. Isolation and properties of a bacteriophage lytic for a wide range of pseudomonads. Canadian Journal of Microbiology, 1971, vol. 17, no. 5, pp. 677–682. doi.org/10.1139/m71-109.

13. Sillankorva  S., Kluskens  L. D., Lingohr  E. J., Kropinski  A. M., Neubauer  P., Azeredo  J. Complete genome sequence of the lytic Pseudomonas fluorescens phage fIBB-PF7A. Virology Journal, 2011, vol. 8, issue 1, p  142. doi.org/10.1186/1743-422x-8-142.

14. Sillankorva  S., Kropinski  A. M., Azeredo  J., Genome Sequence of the Broad-Host-Range Pseudomonas Phage Φ-S1. Journal of Virology, 2012, vol. 86, no. 18, p. 10239. https://doi.org/10.1128/jvi.01605-12.

15. Casjens S. R., Molineux I. J. Short Noncontractile Tail Machines: Adsorption and DNA Delivery by Podoviruses. Advances in Experimental Medicine and Biology, 2011, vol. 726, pp. 143–179. doi.org/10.1007/978-1-4614-0980-9_�7.


Review

Views: 913


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)