Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

RELATIVISTIC MODEL OF MESONS WITH THE COORDINATE- DEPENDENT QUARK MASS

Abstract

Mesons as bound states of quarks with coordinate-dependent mass are modeled. The interaction of quarks is described by the QCD modified Cornell potential with a strong position-dependent coupling αS(r). The equation of motion for the system of two interacting spinless particles in the center-of-mass frame is suggested. Two asymptotic solutions of this equation for large and small distances are obtained. The mass formula is derived for quark-antiquark bound states on this basis. The mass spectra of the ρ and D±* calculated in the framework of the model are in a good agreement with experimental data.


About the Author

M. N. Sergeenko
Francisk Skorina Gomel State University
Belarus

D. Sc. (Physics and Mathematics), Senior researcher



References

1. Collins P. D. B. An Introduction to Regge Theory and High-Energy Physics. Cambridge University Press, 1977. 460 p. doi.org/10.1017/cbo9780511897603

2. Lucha W., Schoberl F. F. Instantaneous Bethe-Salpeter Kernel for the Lightest Pseuoscalar Mesons. Physical Review D, 2016, vol. 93, iss. 9, pp. 096005–096014. doi.org/10.1103/physrevd.93.096005

3. Salpeter E. E., Bethe H. A. A Relativistic Equation for Bound-State Problems. Physical Review, 1951, vol. 84, iss. 6, pp. 1232–1242. doi.org/10.1103/physrev.84.1232

4. Semay C. An upper bound for asymmetrical spinless Salpeter equations. Physics Letters A, 2012, vol. 376, no. 33, pp. 2217–2221. doi.org/10.1016/j.physleta.2012.05.046

5. Ebert D., Faustov R. N., Galkin V. O. Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons. The European Physical Journal C, 2011, vol. 71, no. 12, pp. 1825–1837. doi.org/10.1140/epjc/s10052-011-1825-9

6. Eichten E., Godfrey S., Mahlke H., Rosner J. L. Quarkonia and their transitions. Review of Modern Physics, 2008, vol. 80, no. 3, pp. 1161–1193. doi.org/10.1103/revmodphys.80.1161

7. Morpurgo G. Field theory and the nonrelativistic quark model: a parametrization of the meson masses. Physical Review D, 1990, vol. 41, no. 9, pp. 2865–2870. doi.org/10.1103/physrevd.41.2865

8. Sergeenko M. N. Glueballs and the Pomeron. EuroPhysics Letters, 2010, vol. 89, no. 1, pp. 11001–11007. doi. org/10.1209/0295-5075/89/11001

9. Sergeenko M. N. An Interpolating mass formula and Regge trajectories for light and heavy quarkonia. Zeitschrift fur Physik C, 1994, vol. 64, no. 2, pp. 315–322. doi.org/10.1007/bf01557404

10. Sergeenko M. N. Hadron masses and Regge trajectories for the funnel-type potential. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2011, vol. 55, no. 5, pp. 40–43 (in Russian).

11. Sergeenko M. N. Glueball masses and Regge trajectories for the QCD-inspired potential. The European Physical Journal C, 2012, vol. 72, no. 8, pp. 2128–2139. doi.org/10.1140/epjc/s10052-012-2128-5

12. Sergeenko M. N. Masses and widths of Resonances for the Cornell Potential. Advances in High Energy Physics, 2013, vol. Art. ID 325431, pp. 1–7. doi.org/10.1155/2013/325431

13. Huang Y.-S. Schredinger-Like Relativistic Wave Equation of Motion for the Lorentz-Scalar Potential. Foundations of Physics, 2001, vol. 31, no. 9, pp. 1287–1298. doi.org/10.1023/a:1012270110871

14. Bhaduri R. K. Models of the Nucleon (From Quark to Soliton). New York, Addison-Wesley, 1988. 360 p.

15. Tomilchik L. M. Effects of confinement in conformal-plane background gauge. Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositel’nosti [Covariant methods in theoretical physics. Elementary Particle Physics and theory of relativity]. Minsk, 2001, iss. 5, pp. 155–161 (in Russian).

16. Gorbatsevich A. K., Tomilchik L. M. Particle equation of motion in conformal plane space and quark confinement. Problemy fiziki vysokikh energii v teorii polya, Protvino, 7–13 iyulya 1986 g. [Problems on high energy physics and field theory, Protvino, July 7–13, 1986]. Moscow, 1987, pp. 378–383 (in Russian).

17. Crater H. W., Alstine P. Van. Two-body Dirac equations for meson spectroscopy. Physical Review D. 1988, vol. 37, no. 7, pp. 1982–2000. doi.org/10.1103/physrevd.37.1982

18. Sergeenko M. N. Semiclassical wave equation and exactness of the WKB method. Physical Review A, 1996, vol. 53, no. 6, pp. 3798–3804. doi.org/10.1103/physreva.53.3798

19. Sergeenko M. N. Relativistic semiclassical wave equation and its solution. Modern Physics Letters A, 1997, vol. 12, no. 37, pp. 2859–2871. doi.org/10.1142/s0217732397002983

20. Olive K. A. et al. Review of Particle Physics. Chinese Physics C, 2014, vol. 38, no. 9, p. 090001. doi.org/10.1088/1674-1137/38/9/090001


Review

Views: 703


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)