MAGNITOPHORESIS AND OXYGEN EXCHANGE IN DILUTE SUSPENSION OF ERYTHROCYTES
Abstract
Abstract. Oxygen exchange in single erythrocytes is studied with the use of magnetophoretic magnetometry based upon the registration of cell trajectories in a microfluidic Hele-Shaw cell under the action of high-gradient magnetic field. It is found that, at atmospheric conditions, the equilibrium oxygenation degree of cellular hemoglobin is four times smaller as against a standard level of blood hemoglobin. Also, an application of shear flow leads to an instantaneous increase of cellular hemoglobin oxygenation up to a standard level, and it takes minutes for a low equilibrium level to be re-established. These findings give a new notion as upon erythrocyte functions and may be of use for the hematocrit diagnosis.
About the Authors
B. E. KashevskyBelarus
A. M. Zholud
Belarus
S. B. Kashevsky
Belarus
References
1. Faraday M. Experimental research in electricity. London, R. Taylor and W. Frances, 1955, vol. 3.
2. Selwood P. W. Magnetochemistry. New York, Interscience Publ., 1943; Verlag, Swinburn PR., 2008.
3. Jung Y., Choi Y., Han K.-H., Bruno A. Frazier Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomedical Microdevices, 2010, vol. 12, no. 4, pp. 637–645. doi.org/10.1007/s10544-010-9416-3
4. Huang R., Barber T. A., Schmidt M. A., Tompkins R. G., Toner M., Bianchi D. W., Kapur R., Flejter W. L. A micro-fluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenatal Diagnosis, 2008, vol. 28, no. 10, pp. 892–899. https://doi.org/10.1002/pd.2079
5. Furlani E. P. Magnetophoretic separation of blood cells at the microscale. Journal of Physics D: Applied Physics, 2007, vol. 40, no. 5, pp. 1313–1319. doi.org/10.1088/0022-3727/40/5/001
6. Jin X., Abbot S., Zhang X., Kang L., Voskinarian-Berse V., Zhao R., Kameneva M. V., Moore L. R., Chalmers J. J., Zborowski M. Erythrocyte Enrichment in Hematopoietic Progenitor Cell Cultures Based on Magnetic Susceptibility of the Hemoglobin. Plos ONE, 2012, vol. 7, no. 8, e39491. doi.org/10.1371/journal.pone.0039491
7. Jeonghun Nam, Hui Huang, Hyunjung Lim, Chaeseung Lim, Sehyun Shin. Magnetic Separation of Malaria-Infected Red Blood Cells in Various Developmental Stages. Analytical Chemistry, 2013, vol. 85, no. 15, pp. 7316−7323. doi.org/10.1021/ ac4012057
8. Kashevsky B. E., Zholud A. M., Kashevsky S. B. Magnetophoretic trajectory tracking magnetometry: A new technique for assessing magnetic properties of submagnetic microparticles and cells. Review of Scientific Instruments, 2012, vol. 83, no. 7, pp. 075104-1–075104-10. doi.org/10.1063/1.4732814
9. Kashevsky B. E., Zholud A. M., Kashevsky S. B. Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells. Soft Matter, 2015, vol. 11, no. 33, pp. 6547–6551. doi.org/10.1039/c5sm01311a
10. Kashevsky B. E., Zholud A. M., Kashevsky S. B., Gorudko I. V., Mokhort T. V., Shishko O. N. Magnetophoretic method for studying red blood cells by hemoglobin oxygenation distribution. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2015, vol. 59, no. 1, pp. 58–62 (in Russian).
11. Kameneva M. V., Antaki J. F. Handbook of hemorheology and hemodymanics. Amsterdam, IOS Press., 2007. 215 p.
12. Pauling L., Coryell C. D. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proceedings of the National Academy of Sciences, 1936, vol. 22, no. 4, pp. 210–216. doi. org/10.1073/pnas.22.4.210
13. Severinghaus J. W. Oxyhemoglobin dissociation curve correction for temperature and pH variation in human blood. Journal of Applied Physiology, 1958, vol. 12, pp. 485–486.