Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

ION-BEAM SYNTHESIS OF ZnSe AND ZnS NANOCLUSTERS IN SiO2 LAYERS

Abstract

We have studied the formation of ZnSe and ZnS precipitates in silicon dioxide by ion implantation at 550 °C and subsequent annealing at 900 °C for 30 min in the Ar atmosphere. Two sets of samples have been prepared: the first set of samples has been implanted with Se and Zn ions and the second set of samples – with Se, Zn and S ions. The analysis of XTEM images shows that the “hot” implantation leads to the formation of extended layers containing nanoclusters (with size of 20 nm). Subsequent annealing results in a significant structural transformation of layers with nanoclusters. For annealed samples, large crystallites (up to 90 nm) are observed at the depth of maximum impurity concentration, while small clusters are registered in the subsurface layer of silicon dioxide. Raman spectroscopy proves the formation of ZnSe and ZnSe + ZnS crystal phases for deposited and annealed samples of the first and second sets. 

About the Authors

M. A. Makhavikou
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk
Belarus

Junior researcher

7, Kurchatov Str., 220045



F. F. Komarov
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk
Belarus

Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Laboratory

7, Kurchatov Str., 220045



L. A. Vlasukova
Belarusian State University, Minsk
Belarus

Ph. D. (Physics and Mathematics), Head of the Laboratory

5, Kurchatov Str., 220064



O. V. Milchanin
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk
Belarus

Senior researcher

7, Kurchatov Str., 220045



I. N. Parkhomenko
Belarusian State University, Minsk
Belarus

Ph. D. (Physics and Mathematics), Senior researcher

5, Kurchatov Str., 220064



E. Wendler
Friedrich-Schiller-Universität, Jena
Germany

Professor

Max-Wien-Platz 1, D-07743, Jena, Germany



N. S. Kovalchuk
Joint Stock Company «INTEGRAL» Holding Management Company, Minsk
Belarus

Ph. D. (Engineering), assistant chief engineer

121a, Kazinets Str., Minsk, 220108



References

1. Itoh S., Nakano K., Ishibashi A. Current status and Future prospects of ZnSe-based light-emitting devices. Journal of Crystal Growth, 2000, vol. 214, pp. 1029–1034. doi.org/10.1088/0957-4484/20/1/015102

2. Yong K. T. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology, 2009, vol. 20, 015102. doi.org/10.1088/0957-4484/20/1/015102

3. Shahad K., Olego D. J., Van De Walle C. G., Cammack D. A. Effects of strain on the optical and vibrational properties of ZnSe–ZnSxSe1–x strained-layer superlattices. Journal of Luminescence, 1990, vol. 46, pp. 109–136. doi.org/10.1016/0022- 2313(90)90013-2

4. Jie Z., Qiuhang C., Wanlu Z., Shiliang M., Liangjie H., Jiatao Z., Guoping C., Ruiqian G. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission. Applied Surface Science, 2015, vol. 351, pp. 655–661. doi.org/10.1016/j.apsusc.2015.05.178

5. Bohua D., Lixin C., Ge S., Wei L. Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. Chemical Communications, 2010, vol. 46, pp. 7331–7333. doi.org/10.1039/C0CC02042G

6. SRIM [The Stopping and Range of Ions in Matter] (2013). Available at: http://www.srim.org

7. Komarov F., Vlasukova L., Wesch W., Kamarou A., Milchanin O., Grechnyi S., Mudryi A., Ivaniukovich A. Formation of InAs nanocrystals in Si by high-fluence ion implantation. Nuclear Instruments and Methods in Physics Research B, 2008, vol. 266, pp. 3557–3564. doi.org/10.1016/j.nimb.2008.06.010

8. Komarov F., Togambayeva A., Vlasukova L., Parkhomenko I., Milchanin O., Makhavikov M., Tolkynay M. Ion-Beam Synthesis of InSb Nanocrystals in Si Matrix. Advanced Materials Research, 2013, vol. 679, pp. 9–13. doi.org/10.4028/www. scientific.net/AMR.679.9

9. Brafman O., Chang I.F., Lengyel G., Mitra S. S., Carnall E. Optical Phonons in ZnSxSe1−x Mixed Crystals. Physical Review Letters, 1967, vol. 19, pp. 1120–1123. doi.org/10.1103/PhysRevLett.19.1120

10. Aksyanov I. G., Kompan M. E., Kul’kova I. V. Raman scattering in mosaic silicon carbide films, Physics of the Solid State, 2010, vol. 52, pp. 1850–1854. doi:10.1134/S1063783410090106

11. Lermann G., Bischof T., Materny A., Kiefer W., Kümmell T., Bacher G., Forchel A., Landwehr G. Resonant microRaman investigations of the ZnSe–LO splitting in II–VI semiconductor quantum wires. Journal of Applied Physics, 1997, vol. 81, pp. 1446–1450. doi.org/10.1063/1.364181

12. Brafman O., Mitra S. S. Raman Effect in Wurtzite- and Zinc-Blende-Type ZnS Single Crystals. Physical Review, 1968, vol. 171, pp. 931–934. doi.org/10.1103/PhysRev.171.931

13. Waldmann M., Musgraves J. D., Richardson K., Craig B. A. Structural properties of solution processed Ge23Sb7S70 glass materials. Journal of Materials Chemistry, 2012, vol. 22, pp. 17848–17852. doi.org/10.1039/C2JM32235H

14. Kouji H., Nobuhiko S., Isamu A. Raman Scattering in ZnSxSe1–x Alloys. Japanese Journal of Applied Physics, 1991, vol. 30, no. 3, pp. 501–505. doi.org/10.1143/JJAP.30.501


Review

Views: 616


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)