SATURATION TRANSFER DIFFERENCE NMR SPECTROSCOPY IN STUDIES OF THE INTERACTION OF CYTOCHROME Р450cam WITH 4-PHENYLIMIDAZOLE: DETECTION OF A NOVEL INTERMEDIATE STATE OF THE COMPLEX
Abstract
The present work is devoted to the investigation of the interaction of cytochrome P450cam with 4-phenylimidazole (4-PI) using spectrophotometry and NMR spectroscopy. The data obtained by the STD-NMR method indicate the existence of an intermediate short-lived state of 4-phenylimidazole in the active site of P450cam where 4-phenylimidazole is bound to the inner region of the active site and/or to the substrate access channel without the formation of a coordination bond between the ligand azole group atoms and the heme iron atom. In this article, we first used the STD-NMR method to study the interaction of cytochrome P450 with ligand. The equilibrium dissociation constant of the P450cam-4-PI complex, which was calculated using the dependence of the amplification factor at zero saturation time (10.4 mM), differs from the constant that was calculated at constant saturation time (34.6 mM). This fact indicates the dependence of the Kd determination using STD-NMR at saturation time and concentrations of interacting substances. Comparison of the dissociation energy for the intermediate complex (11.2 kJ) relative to the direct coordination complex (28.5 kJ) suggests that the main contribution to the protein-ligand interaction is related to the hydrophobic interaction of 4-PI with the inner surface of the cavity of the active site of P450cam. The observed intermediate state makes it possible to explain the formation of hydroxylated forms of azole inhibitors during the interaction with cytochromes P450, when an inhibitor is in an intermediate form as a substrate and is not bound by a coordination bond with a heme iron atom.
About the Authors
V. V. BritikovBelarus
Researcher
5/2, Kuprevich Str., 220141
E. V. Pankratova
Belarus
Junior researcher
5/2, Kuprevich Str., 220141
S. A. Usanov
Belarus
Corresponding Member, D. Sc. (Chemistry), Professor
5/2, Kuprevich Str., 220141
References
1. Hrycay E. G., Bandiera S. M. Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, 2015, vol. 851. 368 p. doi.org/10.1007/978-3-319-16009-2
2. Isin E. M., Guengerich F. P. Substrate binding to cytochromes P450. Analytical and bioanalytical chemistry, 2008, vol. 392, no. 6, pp. 1019–1030. doi.org/10.1007/s00216-008-2244-0
3. Aguirre C., Cala O., Krimm I. Overview of Probing Protein-Ligand Interactions Using NMR. Current Protocols in Protein Science, 2015, pp. 17.18.1–17.18.24. doi.org/10.1002/0471140864.ps1718s81
4. Cala O., Guillière F., Krimm I. NMR-based analysis of protein–ligand interactions. Analytical and bioanalytical chemistry, 2014, vol. 406, no. 4, pp. 943–956. doi.org/10.1007/s00216-013-6931-0
5. Mayer M., Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. Journal of the American Chemical Society, 2001, vol. 123, no. 25, pp. 6108–6117. doi. org/10.1021/ja0100120
6. Angulo J., Nieto P. M. STD-NMR: application to transient interactions between biomolecules – a quantitative approach. European Biophysics Journal, 2011, vol. 40, no. 12, pp. 1357–1369. doi.org/10.1007/s00249-011-0749-5
7. Claasen B., Axmann M., Meinecke R., Meyer B. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin αIIbβ3 in native platelets than in liposomes. Journal of the American Chemical Society, 2005, vol. 127, no. 3, pp. 916–919. doi.org/10.1021/ja044434w
8. Haselhorst T., Münster-Kühnel A. K., Oschlies M., Tiralongo J., Gerardy-Schahn R., von Itzstein M. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy. Biochemical and biophysical research communications, 2007, vol. 359, no. 4, pp. 866–870. doi.org/10.1016/j.bbrc.2007.05.204
9. Jayalakshmi V., Krishna N. R. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. Journal of Magnetic Resonance, 2002, vol. 155, no. 1, pp. 106–118. doi.org/10.1006/jmre.2001.2499
10. Godamudunage M. P., Lampe J. N., Scott E. E. Comparison of Cytochrome P450 3A4 and 3A7 with Azole Inhibitors. FASEB Journal, 2017, vol. 31, no. 1, pp. 669.5.
11. Sevrioukova I. F., Poulos T. L. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system. Archives of biochemistry and biophysics, 2011, vol. 507, no. 1, pp. 66–74. doi.org/10.1016/j.abb.2010.08.022
12. Mueller E. J., Loida P. J., Sligar S. G. Twenty-five years of P450cam research. Cytochrome P450. Springer US, 1995, pp. 83–124. doi.org/10.1007/978-1-4757-2391-5_3
13. Poulos T. L., Finzel B. C., Gunsalus I. C., Wagner G. C., Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. Journal of Biological Chemistry, 1985, vol. 260, no. 30, pp. 16122–16130.
14. Hays A. M. A., Dunn A. R., Chiu R., Gray H. B., Stout C. D., Goodin D. B. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. Journal of molecular biology, 2004, vol. 344, no. 2, pp. 455–469. doi.org/10.1016/j.jmb.2004.09.046
15. Lee Y. T., Glazer E. C., Wilson R. F., Stout C. D., Goodin D. B. Three clusters of conformational states in p450cam reveal a multistep pathway for closing of the substrate access channel. Biochemistry, 2011, vol. 50, no. 5, pp. 693–703. doi. org/10.1021/bi101726d
16. Poulos T. L., Howard A. J. Crystal structures of metyrapone- and phenylimidazole-inhibited complexes of cytochrome P-450cam. Biochemistry, 1987, vol. 26, no. 25, pp. 8165–8174. doi.org/10.1021/bi00399a022
17. Lipscomb J. D., Gunsalus I. C. Structural aspects of the active site of cytochrome P-450cam. Drug Metabolism and Disposition, 1973, vol. 1, no. 1, pp. 1–5.
18. Angulo J., Díaz I., Reina J. J., Tabarani G., Fieschi F., Rojo J., Nieto P. M. Saturation Transfer Difference (STD) NMR Spectroscopy Characterization of Dual Binding Mode of a Mannose Disaccharide to DC-SIGN. ChemBioChem, 2008, vol. 9, no. 14, pp. 2225–2227. doi.org/10.1002/cbic.200800361
19. Prasad S., Mazumdar S., Mitra S. Binding of camphor to Pseudomonas putida cytochrome P450cam: steady-state and picosecond time-resolved fluorescence studies. FEBS letters, 2000, vol. 477, no. 3, pp. 157–160. doi.org/10.1016/s0014-5793(00)01745-2
20. Raag R., Martinis S. A., Sligar S. G., Poulos T. L. Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry, 1991, vol. 30, no. 48, pp. 11420–11429. doi.org/10.1021/bi00112a008
21. Pearson J. T., Hill J. J., Swank J., Isoherranen N., Kunze K. L., Atkins W. M. Surface plasmon resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple binding orientations. Biochemistry, 2006, vol. 45, no. 20, pp. 6341–6353. doi.org/10.1021/bi0600042
22. Fernando H., Halpert J. R., Davydov D. R. Resolution of Multiple Substrate Binding Sites in Cytochrome P450 3A4: The Stoichiometry of the Enzyme-Substrate Complexes Probed by FRET and Job’s Titration. Biochemistry, 2006, vol. 45, no. 13, pp. 4199–4209. doi.org/10.1021/bi052491b
23. Davydov D. R., Davydova N. Y., Halpert J. R. Allosteric transitions in cytochrome P450eryF explored with pressureperturbation spectroscopy, lifetime FRET, and a novel fluorescent substrate, Fluorol-7GA. Biochemistry, 2008, vol. 47, no. 43, pp. 11348–11359. doi.org/10.1021/bi8011803
24. Davydov D. R., Rumfeldt J. A. O., Sineva E. V., Fernando H., Davydova N. Y., Halpert J. R. Peripheral ligand-binding site in cytochrome P450 3A4 located with fluorescence resonance energy transfer (FRET). Journal of Biological Chemistry, 2012, vol. 287, no. 9, pp. 6797–6809. doi.org/10.1074/jbc.m111.325654
25. Isin E. M., Guengerich F. P. Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4. Journal of Biological Chemistry, 2007, vol. 282, no. 9, pp. 6863–6874. doi.org/10.1074/jbc.m610346200