RAMAN SPECTROSCOPY STUDY OF THE BONE TISSUE WITH COXARTHROSIS
https://doi.org/10.29235/1561-8323-2018-62-1-24-32
Abstract
The structure of human bone slices taken from patients suffering from deforming arthrosis of the hip joint (coxarthrosis) was studied by Raman spectroscopy. Comparative analysis of healthy and sick bone tissues was made on the basis of the intensity ratio of RS bands associated with organic and mineral components. It was shown that coxarthrosis results in a relative increase of an organic component and in a higher degree of substitution of phosphate groups by carbonate ones in the hydroxyapatite lattice.
About the Authors
Irina N. ParkhomenkoBelarus
Ph. D. (Physics and Mathematics), Senior researcher
5, Kurchatov Str., 220108, Minsk
Liudmila A. Vlasukova
Belarus
Ph. D. (Physics and Mathematics), Head of the Laboratory
5, Kurchatov Str., 220108, Minsk
Fadey F. Komarov
Belarus
Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Laboratory
7, Kurchatov Str., 220108, Minsk
Alexander S. Kamyshan
Belarus
Ph. D. (Physics and Mathematics), Leading researcher
7, Kurchatov Str., 220108, Minsk
Gennadiy A. Uryev
Belarus
Ph. D. (Medicine), Head of the Department
60/4, Kizhevatov Str., 220024, Minsk
Alexander E. Murzich
Belarus
Ph. D. (Medicine), Head of the Department
60/4, Kizhevatov Str., 220024, Minsk
Renata R. Nemkaeva
Kazakhstan
Magister
71, Al-Farabi Ave., 050040, Almaty
References
1. Griffiths J. Raman spectroscopy for medical diagnosis. Analytical Chemistry, 2007, vol. 79, no. 11, pp. 3975–3978. doi. org/10.1021/ac071917k
2. Draper E. R., Morris M. D., Camacho N. P., Matousek P., Towrie M., Parker A. W., Goodship A. E. Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy. Journal of Bone and Mineral Research, 2005, vol. 20, no. 11, pp. 1968–1972. doi.org/10.1359/jbmr.050710
3. Kong K., Kendall C., Stone N., Notingher I. Raman spectroscopy for medical diagnosis – From in-vitro biofluid assays to in-vivio cancer detection. Advanced Drug Delivery Reviews, 2015, vol. 89, pp. 121–134. doi.org/10.1016/j.addr.2015.03.009
4. Akkus O., Adar F., Schaffler M. B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone, 2004, vol. 34, no. 3, pp. 443–453. doi.org/10.1016/j.bone.2003.11.003
5. Bi X., Patil C. A., Lynch C. C., Pharr G. M., Mahadevan-Jansen A., Nyman J. S. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. Journal of Biomechanics, 2011, vol. 44, no. 2, pp. 297–303. doi.org/10.1016/j.jbiomech.2010.10.009
6. Raghavan M., Sahar N. D., Kohn D. H., Morris M. D. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone. Bone, 2012, vol. 50, no. 4, pp. 942–953. doi.org/10.1016/j.bone.2011.12.026
7. Kisileva D. V. Raman microspectrometry application for investigation of structural peculiarities of biogenic apatite. Ezhegodnik-2009: Trudy instituta geologii i geokhimii im. akad. A. N. Zavaritskogo [Year-book-2009: Proceedings of the Institute of Geology and Geochemistry named after Academician A. N. Zavaritsky]. Ekaterinburg, Zavaritsky Institute of Geology and Geochemistry of the Ural Branch (UB) of the Russian Academy of Sciences, 2010, no. 157, pp. 332–335 (in Russian).
8. McCreadie B. R., Morris M. D., Tso-ching Chen, Rao D. S., Finney W. F., Widjaja E., Goldstein S. A. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone, 2006, vol. 39, no. 6, pp. 1190–1195. doi. org/10.1016/j.bone.2006.06.008
9. Koveshnikov V. G., Abakarov M. H., Luzin V. I. The sceletal tissues: cartilagenous tissue, bone tissues. Lugansk, Lugansk State Medical University Publ., 2000. 50 p. (in Russian).
10. de Souza R. A., Jerônimo D. P., Gouvêa H. A., Xavier M., de Souza M. T., Miranda H., Tosato M. G., Martin A. A., Ribeiro W. Fourier-transform Raman spectroscopy study of the ovariectomised rat model of osteoporosis. The Open Bone Journal, 2010, vol. 2, pp. 24–31. doi.org/10.2174/1876525401002010024
11. Mandair G. S., Morris M. D. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKеy Reports, 2015, vol. 4, pp. 620 (8 pages). doi.org/10.1038/bonekey.2014.115
12. France C. A. M., Thomas D. B., Doney C. R., Madden O. FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. Journal of Archaeological Science, 2014, vol. 42, pp. 346–355. doi.org/10.1016/j.jas.2013.11.020
13. Karampas I. A., Orkoula M. G., Kontoyannis C. G. A quantitative bioapatite/collagen calibration method using Raman spectroscopy of bone. Journal of Biophotonics, 2012, vol. 6, no. 8, pp. 573–586. doi.org/10.1002/jbio.201200053
14. Metzler D. Biochemistry: The chemical reaction of living cells. New York, Academic Press, 1977. 1129 p.
15. Czamara K., Majzner K., Pacia M. Z., Kochan K., Kaczor A., Baranska M. Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy, 2015, vol. 46, no. 1, pp. 4–20. doi.org/10.1002/jrs.4607