CHERENKOV-TYPE STIMULATED EMISSION IN GRAPHENE-BASED SYSTEMS
https://doi.org/10.29235/1561-8323-2018-62-1-33-40
Abstract
A mechanism of stimulated emission of electromagnetic radiation by an electron beam in metal carbon nanotubes and graphene is theoretically considered. Three basic properties of graphene and carbon nanotubes: strong slowing down of surface electromagnetic waves, anomalously large electron free path length, and extremely high electron current density to be reached in the structures considered allow us to propose them as candidates for the development of Cherenkovtype nanoscale emitters analogous to a traveling-wave tube and a free electron-based laser. In graphene/polymer multi-layered structures exposed to an external electron beam, the generation is possible on a macroscopic scale, and the generation frequency tuning is proposed by varying the graphene doping, the number of graphene sheets, a distance between sheets, etc.
Keywords
About the Authors
Konstantin G. BatrakovBelarus
Ph. D. (Physics and Mathematics), Assistant Professor
11, Bobruiskaya Str., 220030, Minsk
Sergey A. Maksimenko
Belarus
D. Sc. (Physics and Mathematics), Professor, Director
11, Bobruiskaya Str., 220030, Minsk
References
1. Ryzhii V., Dubinov A., Otsuji T., Mitin V., Shur M. S. Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides. Journal of Applied Physics, 2010, vol. 107, no. 5, art. 054505 (1–6). doi. org/10.1063/1.3327212
2. Watanabe T., Fukushima T., Yabe Y., Tombet S. A. B., Satou A., Dubinov A. A., Aleshkin V. Ya., Mitin V., Ryzhii V., Otsuji T. The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene. New Journal of Physics, 2013, vol. 15, no. 7, art. 075003 (1–11). doi: 10.1088/1367-2630/15/7/075003
3. Berger C., Yi Y., Wang Z. L., de Heer W. A., Multiwalled carbon nanotubes are ballistic conductors at room temperature. Applied Physics A: Materials Science & Processing, 2002, vol. 74, no. 3, pp. 363–365. doi.org/10.1007/s003390201279
4. Katsnelson M. I., Novoselov K. S. Geim A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2006, vol. 2, no. 9, pp. 620–625. doi.org/10.1038/nphys384
5. Slepyan G. Y., Maksimenko S. A., Lakhtakia A., Yevtushenko O., Gusakov A. V. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions and surface wave propagation. Physical Review B, 1999, vol. 60, no. 24, pp. 17136–17149. doi.org/10.1103/physrevb.60.17136
6. Shuba M. V., Paddubskaya A. G., Plyushch A. O., Kuzhir P. P., Slepyan G. Ya., Maksimenko S. A., Ksenevich V. K., Buka P., Seliuta D., Kasalynas I., Macutkevic J., Valusis G., Thomsen C., Lakhtakia A. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Physical Review B, 2012, vol. 85, no. 16, art. 165435 (1–6). doi.org/10.1103/physrevb.85.165435
7. Yao Z., Kane C. L., Dekker C. High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters, 2000, vol. 84, no. 13, pp. 2941–2944. doi.org/10.1103/physrevlett.84.2941
8. Batrakov K., Kuzhir P., Maksimenko S. Toward the nano-FEL: Undulator and Cherenkov mechanisms of light emission in carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2008, vol. 40, no. 5, pp. 1065–1068. doi. org/10.1016/j.physe.2007.08.003
9. Batrakov K. G., Maksimenko S. A., Kuzhir P. P., Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Physical Review B, 2009, vol. 79, no. 12, pp. 125408 (1–12). doi.org/10.1103/physrevb.79.125408
10. Batrakov K., Kuzhir P., Maksimenko S., Cherenkov synchronism: non-relativistic electron beam in multi-walled nanotube and multi-layer graphene. Physica B: Condensed Matter, 2010, vol. 405, no. 14, pp. 3050–3053. doi.org/10.1016/j. physb.2010.01.047
11. Novoselov K., Geim A., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, no. 5696, pp. 666–669. doi.org/10.1126/science.1102896
12. Batrakov K., Kuzhir P., Maksimenko S., Paddubskaya A., Voronovich S., Lambin Ph., Kaplas T., Svirko Yu. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Scientific Reports, 2014, vol. 4, no. 1, art. 7191 (1–5). doi.org/10.1038/srep07191
13. Guo B., Fang L., Zhang B., Gong J. R. Graphene Doping: A Review. Insciences Journal, 2011, vol. 1, no. 2, pp. 80–89. doi.org/10.5640/insc.010280
14. Batrakov K., Kuzhir P., Maksimenko S., Volynets N., Voronovich S., Paddubskaya A., Valusis G., Kaplas T., Svirko Yu., Lambin Ph. Enhanced microwave-to-terahertz absorption in graphene. Applied Physics Letters, 2016, vol. 108, no. 12, art. 123101 (1–4). doi.org/10.1063/1.4944531
15. Kuzelev M. V., Rukhadze A. A. Stimulated radiation from high-current relativistic electron beams. Soviet Physics Uspekhi, 1987, vol. 30, no. 6, pp. 507–524. doi.org/10.1070/pu1987v030n06abeh002853