Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

CHERENKOV-TYPE STIMULATED EMISSION IN GRAPHENE-BASED SYSTEMS

https://doi.org/10.29235/1561-8323-2018-62-1-33-40

Abstract

A mechanism of stimulated emission of electromagnetic radiation by an electron beam in metal carbon nanotubes and graphene is theoretically considered. Three basic properties of graphene and carbon nanotubes: strong slowing down of surface electromagnetic waves, anomalously large electron free path length, and extremely high electron current density to be reached in the structures considered allow us to propose them as candidates for the development of Cherenkovtype nanoscale emitters analogous to a traveling-wave tube and a free electron-based laser. In graphene/polymer multi-layered structures exposed to an external electron beam, the generation is possible on a macroscopic scale, and the generation frequency tuning is proposed by varying the graphene doping, the number of graphene sheets, a distance between sheets, etc. 

About the Authors

Konstantin G. Batrakov
Institute for Nuclear Problems of the Belarusian State University
Belarus

Ph. D. (Physics and Mathematics), Assistant Professor

11, Bobruiskaya Str., 220030, Minsk



Sergey A. Maksimenko
Institute for Nuclear Problems of the Belarusian State University
Belarus

D. Sc. (Physics and Mathematics), Professor, Director

11, Bobruiskaya Str., 220030, Minsk



References

1. Ryzhii V., Dubinov A., Otsuji T., Mitin V., Shur M. S. Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides. Journal of Applied Physics, 2010, vol. 107, no. 5, art. 054505 (1–6). doi. org/10.1063/1.3327212

2. Watanabe T., Fukushima T., Yabe Y., Tombet S. A. B., Satou A., Dubinov A. A., Aleshkin V. Ya., Mitin V., Ryzhii V., Otsuji T. The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene. New Journal of Physics, 2013, vol. 15, no. 7, art. 075003 (1–11). doi: 10.1088/1367-2630/15/7/075003

3. Berger C., Yi Y., Wang Z. L., de Heer W. A., Multiwalled carbon nanotubes are ballistic conductors at room temperature. Applied Physics A: Materials Science & Processing, 2002, vol. 74, no. 3, pp. 363–365. doi.org/10.1007/s003390201279

4. Katsnelson M. I., Novoselov K. S. Geim A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2006, vol. 2, no. 9, pp. 620–625. doi.org/10.1038/nphys384

5. Slepyan G. Y., Maksimenko S. A., Lakhtakia A., Yevtushenko O., Gusakov A. V. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions and surface wave propagation. Physical Review B, 1999, vol. 60, no. 24, pp. 17136–17149. doi.org/10.1103/physrevb.60.17136

6. Shuba M. V., Paddubskaya A. G., Plyushch A. O., Kuzhir P. P., Slepyan G. Ya., Maksimenko S. A., Ksenevich V. K., Buka P., Seliuta D., Kasalynas I., Macutkevic J., Valusis G., Thomsen C., Lakhtakia A. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Physical Review B, 2012, vol. 85, no. 16, art. 165435 (1–6). doi.org/10.1103/physrevb.85.165435

7. Yao Z., Kane C. L., Dekker C. High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters, 2000, vol. 84, no. 13, pp. 2941–2944. doi.org/10.1103/physrevlett.84.2941

8. Batrakov K., Kuzhir P., Maksimenko S. Toward the nano-FEL: Undulator and Cherenkov mechanisms of light emission in carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2008, vol. 40, no. 5, pp. 1065–1068. doi. org/10.1016/j.physe.2007.08.003

9. Batrakov K. G., Maksimenko S. A., Kuzhir P. P., Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Physical Review B, 2009, vol. 79, no. 12, pp. 125408 (1–12). doi.org/10.1103/physrevb.79.125408

10. Batrakov K., Kuzhir P., Maksimenko S., Cherenkov synchronism: non-relativistic electron beam in multi-walled nanotube and multi-layer graphene. Physica B: Condensed Matter, 2010, vol. 405, no. 14, pp. 3050–3053. doi.org/10.1016/j. physb.2010.01.047

11. Novoselov K., Geim A., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, no. 5696, pp. 666–669. doi.org/10.1126/science.1102896

12. Batrakov K., Kuzhir P., Maksimenko S., Paddubskaya A., Voronovich S., Lambin Ph., Kaplas T., Svirko Yu. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Scientific Reports, 2014, vol. 4, no. 1, art. 7191 (1–5). doi.org/10.1038/srep07191

13. Guo B., Fang L., Zhang B., Gong J. R. Graphene Doping: A Review. Insciences Journal, 2011, vol. 1, no. 2, pp. 80–89. doi.org/10.5640/insc.010280

14. Batrakov K., Kuzhir P., Maksimenko S., Volynets N., Voronovich S., Paddubskaya A., Valusis G., Kaplas T., Svirko Yu., Lambin Ph. Enhanced microwave-to-terahertz absorption in graphene. Applied Physics Letters, 2016, vol. 108, no. 12, art. 123101 (1–4). doi.org/10.1063/1.4944531

15. Kuzelev M. V., Rukhadze A. A. Stimulated radiation from high-current relativistic electron beams. Soviet Physics Uspekhi, 1987, vol. 30, no. 6, pp. 507–524. doi.org/10.1070/pu1987v030n06abeh002853


Review

Views: 819


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)