Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

LIGAND-BINDING AND CATALYTIC PROPERTIES OF RECOMBINANT HUMAN THROMBOXANE SYNTHASE

https://doi.org/10.29235/1561-8323-2018-62-1-51-65

Abstract

To study the spectrum of modulators of the human thromboxane synthase activity, the interaction of recombinant protein with various low-molecular weight ligands was analyzed. It was shown that thromboxane synthase interacts with a number of fatty acids and their derivatives (potential substrates or concurrent inhibitors), being a target for nonselective inhibition by imidazole and triazole derivatives used in medical practice and agriculture. Thus, another mechanism of action of endocrine-disrupting chemicals (EDC) was established. For the first time, the reduction of heme iron of thromboxane synthase by cytochrome P450 reductase was shown. This interaction accompanied by a partial inhibitory effect on the enzyme suppresses the formation of reaction by-products 12-hydroxyheptadecatenoic acid (12-HHT) and malonic dialdehyde (MDA). It is likely that this mechanism can participate in the regulation of the enzyme activity in vivo. 

About the Authors

Andrey V. Svirid
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Researcher

5/2, Kuprevich Str., 220014, Minsk



Michail A. Shapira
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Junior Researcher

5/2, Kuprevich Str., 220014, Minsk



Pavel G. Shahoika
National Antidoping Laboratory
Belarus

Chemist

31, Lesnoy, Minsk Region



Yury G. Pakhadnia
National Antidoping Laboratory
Belarus

Ph. D. (Biology), Head of the Department

31, Lesnoy, Minsk Region



Andrei A. Gilep
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Ph. D. (Chemistry), Leading researcher

5/2, Kuprevich Str., 220014, Minsk



Sergei A. Usanov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Corresponding Member, D. Sc. (Chemistry), Professor

5/2, Kuprevich Str., 220014, Minsk



References

1. Ullrich V., Graf H. Prostacyclin and thromboxane synthase as P-450 enzymes. Trends in Pharmacological Sciences, 1984, vol. 5, pp. 352–355. doi.org/10.1016/0165-6147(84)90467-x

2. Ullrich V., Nüsing R. Thromboxane synthase. From isolation to function. Stroke, 1990, vol. 21, no. 12, suppl. IV, pp. 134–138.

3. Nüsing R., Sauter G., Fehr P., Dürmüller U., Kasper M., Gudat F., Ullrich V. Localization of thromboxane synthase in human tissues by monoclonal antibody Tü 300. Virchows Archiv. A, Pathological anatomy and histopathology, 1992, vol. 421, no. 3, pp. 249–254. doi.org/10.1007/bf01611182

4. Dormeshkin D. O., Svirid A. V., Gilep A. A., Usanov S. A. Screening of thromboxane synthase peptidomimetics by peptide phage display. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2015, vol. 59, no. 2, pp. 53–60 (in Russian).

5. Locuson C. W., Hutzler J. M., Tracy T. S. Visible Spectra of Type II Cytochrome P450-Drug Complexes: Evidence that “Incomplete” Heme Coordination Is Common. Drug Metabolism and Disposition, 2007, vol. 35, no. 4, pp. 614–622. doi. org/10.1124/dmd.106.012609

6. Swoboda M., Henig J., Cheng H.-M., Brugger D., Haltrich D., Plumeré N., Schlierf M. Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments. ACS Nano, 2012, vol. 6, no. 7, pp. 6364–6369. doi. org/10.1021/nn301895c

7. Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature Methods, 2014, vol. 12, no. 1, pp. 7–8. doi.org/10.1038/nmeth.3213

8. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993, vol. 26, no. 2, pp. 283–291. doi.org/10.1107/ s0021889892009944

9. Blaszczyk M., Kurcinski M., Kouza M., Wieteska L., Debinski A., Kolinski A., Kmiecik S. Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, vol. 93, pp. 72–83. doi.org/10.1016/j.ymeth.2015.07.004

10. Das A., Varma S. S., Mularczyk C., Meling D. Functional Investigations of Thromboxane Synthase (CYP5A1) in Lipid Bilayers of Nanodiscs. Chembiochem: a European Journal of Chemical Biology, 2014, vol. 15, no. 6, pp. 892–899. doi. org/10.1002/cbic.201300646

11. Wang L. H., Matijevic-Aleksic N., Hsu P. Y., Ruan K. H., Wu K. K., Kulmacz R. J. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. Journal of Biological Chemistry, 1996, vol. 271, no. 33, pp. 19970–19975. doi.org/10.1074/jbc.271.33.19970

12. Hsu P.-Y., Tsai A.-L., Wang L.-H. Identification of Thromboxane Synthase Amino Acid Residues Involved in HemePropionate Binding. Archives of Biochemistry and Biophysics, 2000, vol. 383, no. 1, pp. 119–127. doi.org/10.1006/abbi.2000.2041

13. Edson K. Z., Rettie A. E. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Current Topics in Medicinal Chemistry, 2013, vol. 13, no. 12, pp. 1429–1440. doi.org/10.2174/15680266113139990110

14. Hecker M., Haurand M., Ullrich V., Diczfalusy U., Hammarström S. Products, Kinetics, and Substrate Specificity of Homogeneous Thromboxane Synthase from Human Platelets: Development of a Novel Enzyme Assay. Archives of Biochemistry and Biophysics, 1987, vol. 254, no. 1, pp. 124–135. doi.org/10.1016/0003-9861(87)90088-9

15. Uchida Y., Murao S. Effects of thromboxane synthetase inhibitors on cyclical reduction of coronary blood flow in dogs. Japanese Heart Journal, 1981, vol. 22, no. 6, pp. 971–975. doi.org/10.1536/ihj.22.971

16. Köfeler H. C., Fauler G., Windischhofer W., Leis H. J. Effect of cytochrome P-450 inhibitors econazole, bifonazole and clotrimazole on prostanoid formation. British Journal of Pharmacology, 2000, vol. 130, no. 6, pp. 1241–1246. doi.org/10.1038/ sj.bjp.0703427

17. Zhang H.-Z., Gan L.-L., Wang H., Zhou C.-H. New Progress in Azole Compounds as Antimicrobial Agents. MiniReviews in Medicinal Chemistry, 2017, vol. 17, no. 2, pp. 122–166. doi.org/10.2174/1389557516666160630120725

18. Vinggaard A. M., Hass U., Dalgaard M., Andersen H. R., Bonefeld-Jørgensen E., Christiansen S., Laier P., Poulsen M. E. Prochloraz: an imidazole fungicide with multiple mechanisms of action. International Journal of Andrology, 2006, vol. 29, no. 1, pp. 186–192. doi.org/10.1111/j.1365-2605.2005.00604.x

19. Robitaille C. N., Rivest P., Sanderson J. T. Antiandrogenic Mechanisms of Pesticides in Human LNCaP Prostate and H295R Adrenocortical Carcinoma Cells. Toxicological Sciences, 2015, vol. 143, no. 1, pp. 126–135. doi.org/10.1093/toxsci/kfu212

20. Sanderson J. T., Boerma J., Lansbergen G. W., van den Berg M. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicology and Applied Pharmacology, 2002, vol. 182, no. 1, pp. 44–54. doi.org/10.1006/taap.2002.9420


Review

Views: 939


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)