LIGAND-BINDING AND CATALYTIC PROPERTIES OF RECOMBINANT HUMAN THROMBOXANE SYNTHASE
https://doi.org/10.29235/1561-8323-2018-62-1-51-65
Abstract
To study the spectrum of modulators of the human thromboxane synthase activity, the interaction of recombinant protein with various low-molecular weight ligands was analyzed. It was shown that thromboxane synthase interacts with a number of fatty acids and their derivatives (potential substrates or concurrent inhibitors), being a target for nonselective inhibition by imidazole and triazole derivatives used in medical practice and agriculture. Thus, another mechanism of action of endocrine-disrupting chemicals (EDC) was established. For the first time, the reduction of heme iron of thromboxane synthase by cytochrome P450 reductase was shown. This interaction accompanied by a partial inhibitory effect on the enzyme suppresses the formation of reaction by-products 12-hydroxyheptadecatenoic acid (12-HHT) and malonic dialdehyde (MDA). It is likely that this mechanism can participate in the regulation of the enzyme activity in vivo.
Keywords
About the Authors
Andrey V. SviridBelarus
Researcher
5/2, Kuprevich Str., 220014, Minsk
Michail A. Shapira
Belarus
Junior Researcher
5/2, Kuprevich Str., 220014, Minsk
Pavel G. Shahoika
Belarus
Chemist
31, Lesnoy, Minsk Region
Yury G. Pakhadnia
Belarus
Ph. D. (Biology), Head of the Department
31, Lesnoy, Minsk Region
Andrei A. Gilep
Belarus
Ph. D. (Chemistry), Leading researcher
5/2, Kuprevich Str., 220014, Minsk
Sergei A. Usanov
Belarus
Corresponding Member, D. Sc. (Chemistry), Professor
5/2, Kuprevich Str., 220014, Minsk
References
1. Ullrich V., Graf H. Prostacyclin and thromboxane synthase as P-450 enzymes. Trends in Pharmacological Sciences, 1984, vol. 5, pp. 352–355. doi.org/10.1016/0165-6147(84)90467-x
2. Ullrich V., Nüsing R. Thromboxane synthase. From isolation to function. Stroke, 1990, vol. 21, no. 12, suppl. IV, pp. 134–138.
3. Nüsing R., Sauter G., Fehr P., Dürmüller U., Kasper M., Gudat F., Ullrich V. Localization of thromboxane synthase in human tissues by monoclonal antibody Tü 300. Virchows Archiv. A, Pathological anatomy and histopathology, 1992, vol. 421, no. 3, pp. 249–254. doi.org/10.1007/bf01611182
4. Dormeshkin D. O., Svirid A. V., Gilep A. A., Usanov S. A. Screening of thromboxane synthase peptidomimetics by peptide phage display. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2015, vol. 59, no. 2, pp. 53–60 (in Russian).
5. Locuson C. W., Hutzler J. M., Tracy T. S. Visible Spectra of Type II Cytochrome P450-Drug Complexes: Evidence that “Incomplete” Heme Coordination Is Common. Drug Metabolism and Disposition, 2007, vol. 35, no. 4, pp. 614–622. doi. org/10.1124/dmd.106.012609
6. Swoboda M., Henig J., Cheng H.-M., Brugger D., Haltrich D., Plumeré N., Schlierf M. Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments. ACS Nano, 2012, vol. 6, no. 7, pp. 6364–6369. doi. org/10.1021/nn301895c
7. Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature Methods, 2014, vol. 12, no. 1, pp. 7–8. doi.org/10.1038/nmeth.3213
8. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993, vol. 26, no. 2, pp. 283–291. doi.org/10.1107/ s0021889892009944
9. Blaszczyk M., Kurcinski M., Kouza M., Wieteska L., Debinski A., Kolinski A., Kmiecik S. Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, vol. 93, pp. 72–83. doi.org/10.1016/j.ymeth.2015.07.004
10. Das A., Varma S. S., Mularczyk C., Meling D. Functional Investigations of Thromboxane Synthase (CYP5A1) in Lipid Bilayers of Nanodiscs. Chembiochem: a European Journal of Chemical Biology, 2014, vol. 15, no. 6, pp. 892–899. doi. org/10.1002/cbic.201300646
11. Wang L. H., Matijevic-Aleksic N., Hsu P. Y., Ruan K. H., Wu K. K., Kulmacz R. J. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. Journal of Biological Chemistry, 1996, vol. 271, no. 33, pp. 19970–19975. doi.org/10.1074/jbc.271.33.19970
12. Hsu P.-Y., Tsai A.-L., Wang L.-H. Identification of Thromboxane Synthase Amino Acid Residues Involved in HemePropionate Binding. Archives of Biochemistry and Biophysics, 2000, vol. 383, no. 1, pp. 119–127. doi.org/10.1006/abbi.2000.2041
13. Edson K. Z., Rettie A. E. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Current Topics in Medicinal Chemistry, 2013, vol. 13, no. 12, pp. 1429–1440. doi.org/10.2174/15680266113139990110
14. Hecker M., Haurand M., Ullrich V., Diczfalusy U., Hammarström S. Products, Kinetics, and Substrate Specificity of Homogeneous Thromboxane Synthase from Human Platelets: Development of a Novel Enzyme Assay. Archives of Biochemistry and Biophysics, 1987, vol. 254, no. 1, pp. 124–135. doi.org/10.1016/0003-9861(87)90088-9
15. Uchida Y., Murao S. Effects of thromboxane synthetase inhibitors on cyclical reduction of coronary blood flow in dogs. Japanese Heart Journal, 1981, vol. 22, no. 6, pp. 971–975. doi.org/10.1536/ihj.22.971
16. Köfeler H. C., Fauler G., Windischhofer W., Leis H. J. Effect of cytochrome P-450 inhibitors econazole, bifonazole and clotrimazole on prostanoid formation. British Journal of Pharmacology, 2000, vol. 130, no. 6, pp. 1241–1246. doi.org/10.1038/ sj.bjp.0703427
17. Zhang H.-Z., Gan L.-L., Wang H., Zhou C.-H. New Progress in Azole Compounds as Antimicrobial Agents. MiniReviews in Medicinal Chemistry, 2017, vol. 17, no. 2, pp. 122–166. doi.org/10.2174/1389557516666160630120725
18. Vinggaard A. M., Hass U., Dalgaard M., Andersen H. R., Bonefeld-Jørgensen E., Christiansen S., Laier P., Poulsen M. E. Prochloraz: an imidazole fungicide with multiple mechanisms of action. International Journal of Andrology, 2006, vol. 29, no. 1, pp. 186–192. doi.org/10.1111/j.1365-2605.2005.00604.x
19. Robitaille C. N., Rivest P., Sanderson J. T. Antiandrogenic Mechanisms of Pesticides in Human LNCaP Prostate and H295R Adrenocortical Carcinoma Cells. Toxicological Sciences, 2015, vol. 143, no. 1, pp. 126–135. doi.org/10.1093/toxsci/kfu212
20. Sanderson J. T., Boerma J., Lansbergen G. W., van den Berg M. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicology and Applied Pharmacology, 2002, vol. 182, no. 1, pp. 44–54. doi.org/10.1006/taap.2002.9420