Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

STRUCTURAL DETERMINANTS OF Bax DISPLACMENT FROM THE TOM/Bax COMPLEX BY tBid DURING APOPTOSIS

https://doi.org/10.29235/1561-8323-2018-62-1-73-77

Abstract

Structural factors that induce the proapoptotic activation of Bax by the protein TOM22 of the TOM complex and BH3-only protein tBid are established. 

About the Authors

Viktor A. Urban
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Junior researcher

27, Akademicheskaya Str., 220072, Minsk



Hanna V. Dudko
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Junior researcher

27, Akademicheskaya Str., 220072, Minsk



Valery G. Veresov
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

D. Sc. (Biology), Chief researcher

27, Akademicheskaya Str., 220072, Minsk



References

1. Bohnert M., Pfanner N., van der Laan M. Mitochondrial machineries for insertion of membrane proteins. Current Opinion in Structural Biology, 2015, vol. 33, pp. 92–102. doi.org/10.1016/j.sbi.2015.07.013

2. Bellot G., Cartron P.-F., Er E., Oliver L., Juin P., Armstrong L. C., Bornstein P., Mihara K., Manon S., Vallette F. M. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death and Differentiation, 2007, vol. 14, pp. 785–794. doi.org/10.1038/sj.cdd.4402055

3. Veresov V. G., Davidovskii A. I. Structural insights into proapoptotic signaling mediated by MTCH2, VDAC2, TOM40 and TOM22. Cellular Signalling, 2014, vol. 26, no. 2, pp. 370–382. doi.org/10.1016/j.cellsig.2013.11.016

4. Szklarz L. K. S., Kozjak-Pavlovic V., Vögtle F.-N., Chacinska A., Milenkovic D., Vogel S., Dürr M., Westermann B., Guiard B., Martinou J.-C., Borner C., Pfanner N., Meisinger C. Preprotein Transport Machineries of Yeast Mitochondrial Outer Membrane Are not Required for Bax-induced Release of Intermembrane Space Proteins. Journal of Molecular Biology, 2007, vol. 368, no. 1, pp. 44–54. doi.org/10.1016/j.jmb.2007.01.016

5. Dudko A. V., Veresov V. G. Cryo-electron microscopy-based Integrative atomic-resolution modeling of the TOM GIP complex. 8th Moscow Conference on Computational Molecular Biology, July 27–30, 2017, Moscow, Russia. Moscow, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 2017. Available at: http:// mccmb.belozersky.msu.ru/2017/proceedings/abstracts/25.pdf

6. Kozakov D., Brenke R., Comeau S. R., Vajda S. PIPER: an FFT-Based protein docking program with pairwise potentials. Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no. 2, pp. 392–406. doi.org/10.1002/prot.21117

7. Comeau S. R., Gatchell D. W., Vajda S., Camacho C. J. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 2004, vol. 20, no. 1, pp. 45–50. doi.org/10.1093/bioinformatics/btg371

8. Gray J. J., Moughon S., Chu Wang, Schueler-Furman O., Kuhlman B., Rohl C. A., Baker D. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. Journal of Molecular Biology, 2003, vol. 331, no. 1, pp. 281–299. doi.org/10.1016/s0022-2836(03)00670-3

9. Lyskov S., Gray J. J. The RosettaDock server for local protein-protein docking. Nucleic Acids Research, 2008, vol. 36, pp. 233–238. doi.org/10.1093/nar/gkn216

10. Heo L., Park H., Seok C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 2013, vol. 41, pp. 384–388. doi.org/10.1093/nar/gkt458

11. Mandell D. J., Coutsias E. A., Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nature Methods, 2009, vol. 6, no. 8, pp. 551–552. doi.org/10.1038/nmeth0809-551

12. Xue L. C., Rodrigues J. P., Kastritis P. L., Bonvin A. M., Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 2016, vol. 32, no. 23, pp. 3676–3678. doi.org/10.1093/bioinformatics/ btw514

13. Bender B. J., Cisneros A., Duran A. M., Finn J. A., Fu D., Lokits A. D., Mueller B. K., Sangha A. K., Sauer M. F., Sevy A. M., Sliwoski G., Sheehan J. H., DiMaio F., Meiler J., Moretti R. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry, 2016, vol. 55, no. 34, pp. 4748–4763. doi.org/10.1021/acs.biochem.6b00444

14. Sukhwal A., Sowdhamini R. PPCheck: A Webserver for the Quantitative Analysis of Protein-Protein Interfaces and Prediction of Residue Hotspots. Bioinformatics and Biology Insights, 2015, vol. 9, pp. 141–151. doi.org/10.4137/bbi.s25928


Review

Views: 810


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)