GENETIC POLYMORPHISM OF INTRACELLULAR SIGNAL PATHWAYS IN PATIENTS WITH NON-SMALL CELL LUNG CANCER
https://doi.org/10.29235/1561-8323-2018-62-1-78-85
Abstract
The key process in the pathogenesis of any malignant neoplasms, including non-small cell lung cancer (NSCLC), is the angiogenesis that is activated by two tyrosine kinase cascades (RAS/RAF/MAPK and PI3K/AKT/mTOR). The main genes controlling these pathways are EGFR, KRAS, PIK3CA and PTEN. The study analyzed the mutations in 18–21 exons of the EGFR gene, 2 exons of the KRAS gene, 9 and 20 exons of the PIK3CA gene and 7 exons of the PTEN gene in patients with NSCLC living in Belarus and their relationship with the clinical and morphological characteristics of the tumor. Our results revealed that mutations in the EGFR gene are significantly frequent more than 5 times in patients with non-small cell lung cancer than those in the control group. Classical mutations in the EGFR gene are found only in patients with lung adenocarcinoma, predominantly in women. Mutations of the KRAS gene are found only in men, and in patients with adenocarcinoma it is 3 times more likely than in patients with squamous cell lung carcinoma. There are no somatic mutations in the PIK3CA and PTEN genes in patients with NSCLC in this study.
About the Authors
Anna N. ShchayukBelarus
Junior researcher
27, Akademicheskaya Str., 220072, Minsk
Evelina V. Krupnova
Belarus
Ph. D. (Biology), Assistant Professor
27, Akademicheskaya Str., 220072, Minsk
Michail N. Shapetska
Belarus
Ph. D. (Medicine), Assistant Professor
83, Dzerzhinsky Ave., 220116, Minsk
Alena P. Mikhalenka
Belarus
Ph. D. (Biology), Leading researcher
27, Akademicheskaya Str., 220072, Minsk
Natalia V. Chebotareva
Belarus
Researcher
27, Akademicheskaya Str., 220072, Minsk
Sergej Y. Dedik
Belarus
Junior researcher
83, Dzerzhinsky Ave., 220116, Minsk
Aleksandr V. Kilchevsky
Belarus
Academician, D. Sc. (Biology), Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
References
1. Bumrungthai S., Munjal K., Nandekar S., Cooper K., Ekalaksananan T., Pientong C., Evans M. F. Epidermal growth factor receptor pathway mutation and expression profiles in cervical squamous cell carcinoma: therapeutic implications. Journal of Translational Medicine, 2015, vol. 13, no. 244. doi.org/10.1186/s12967-015-0611-0
2. Richer A. L., Friel J., Carson V., Inge L., Whitsett T. G. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR. Pharmacogenomics and Personalized Medicine, 2015, vol. 8, pp. 63–79. doi.org/10.2147/ pgpm.s52845
3. Nedergaard M. K., Hedegaard C. J., Poulsen H. S. Targeting the Epidermal Growth Factor Receptor in Solid Tumor Malignancies. Biodrugs, 2012, vol. 26, no. 2, pp. 83–99. doi.org/10.2165/11599760-000000000-00000
4. Xiao-Li Jia, Gang Chen. EGFR and KRAS mutations in Chinese patients with adenosquamous carcinoma of the lung. Lung Cancer, 2011, vol. 74, no. 3, pp. 396–400. doi.org/10.1016/j.lungcan.2011.04.005
5. Mitsudomi T. Molecular epidemiology of lung cancer and geographic variations with special reference to EGFR mutations. Translational Lung Cancer Research, 2014, vol. 3, no. 4, pp. 205–211.
6. Matikas A., Mistriotis D., Georgoulias V., Kotsakis A. Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Critical Reviews in Oncology/Hematology, 2017, vol. 110, pp. 1–12. doi. org/10.1016/j.critrevonc.2016.12.005
7. Ihle N. T., Byers L. A., Kim E. S., Saintigny P., Lee J. J., Blumenschein G. R., Tsao A., Liu S., Larsen J. E., Wang J., Diao L., Coombes K. R., Chen L., Zhang S., Abdelmelek M. F., Tang X., Papadimitrakopoulou V., Minna J. D., Lippman S. M., Hong W. K., Herbst R. S., Wistuba I. I., Heymach J. V., Powis G. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. JNCI: Journal of the National Cancer Institute, 2012, vol. 104, no. 3, pp. 228–239. doi.org/10.1093/jnci/djr523
8. Loi S., Haibe-Kains B., Majjaj S., Lallemand F., Durbecq V., Larsimont D., Gonzalez-Angulo A. M., Pusztai L., Symmans W. F., Bardelli A., Ellis P., Tutt A. N. J., Gillett C. E., Hennessy B. T., Mills G. B., Phillips W. A., Piccart M. J., Speed T. P., McArthur G. A., Sotiriou C. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proceedings of the National Academy of Sciences, 2010, vol. 107, no. 22, pp. 10208–10213. doi.org/10.1073/pnas.0907011107
9. Steelman L. S., Chappell W. H., Abrams S. L., Kempf C. R., Long J., Laidler P., Mijatovic S., Maksimovic-Ivanic D., Stivala F., Mazzarino M. C., Donia M., Fagone P., Malaponte G., Nicoletti F., Libra M., Milella M., Tafuri A., Bonati A., Bäsecke J., Cocco L., Evangelisti C., Martelli A. M., Montalto G., Cervello M., McCubrey J. A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, vol. 3, no. 3, pp. 192–222. doi.org/10.18632/aging.100296
10. Gustin J. P., Karakas B., Weiss M. B., Abukhdeir A. M., Lauring J., Garay J. P., Cosgrove D., Tamaki A., Konishi H., Konishi Y., Mohseni M., Wang G., Rosen D. M., Denmeade S. R., Higgins M. J., Vitolo M. I., Bachman K. E., Park B. H. Knockin of mutant PIK3CA activates multiple oncogenic pathways. Proceedings of the National Academy of Sciences, 2009, vol. 106, no. 8, pp. 2835–2840. doi.org/10.1073/pnas.0813351106
11. Song M. S., Salmena L., Pandolfi P. P. The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 2012, vol. 13, no. 5, pp. 283–296. doi.org/10.1038/nrm3330
12. Mathew C. C. The isolation of high molecular weight eucaryotic DNA. Walker J. M. N. J. (ed.) Nucleic Acids. Methods in Molecular Biology, vol. 2. Clifton, Human Press, 1984, pp. 31–34. doi.org/10.1385/0-89603-064-4:31
13. Kawaguchi T., Koh Y., Ando M., Ito N., Takeo S., Adachi H., Tagawa T., Kakegawa S., Yamashita M., Kataoka K., Ichinose Y., Takeuchi Y., Serizawa M., Tamiya A., Shimizu S., Yoshimoto N., Kubo A., Isa S., Saka H., Matsumura A. Prospective Analysis of Oncogenic Driver Mutations and Environmental Factors: Japan Molecular Epidemiology for Lung Cancer Study. Journal of Clinical Oncology, 2016, vol. 34, no. 19, pp. 2247–2257. doi.org/10.1200/jco.2015.64.2322
14. Arrieta O., Cardona A. F., Martín C., Más-López L., Corrales-Rodríguez L., Bramuglia G., Castillo-Fernandez O., Meyerson M., Amieva-Rivera E., Campos-Parra A. D., Carranza H., Gómez de la Torre J. C., Powazniak Y., Aldaco-Sarvide F., Vargas C., Trigo M., Magallanes-Maciel M., Otero J., Sánchez-Reyes R., Cuello M., Updated Frequency of EGFR and KRAS Mutations in NonSmall-Cell Lung Cancer in Latin America: The Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). Journal of Thoracic Oncology, 2015, vol. 10, no. 5, pp. 838–843. doi.org/10.1097/jto.0000000000000481
15. Mazurenko N. N., Tsyganova I. V., Gagarin I. M., Chuev I. V., Mochalnikova V. V., Kolomeytseva A. A., Gorbunova V. A. EGFR and KRAS mutations important for non-small cell lung cancer target therapy. Molekulyarnaya meditsina = Molecular medicine, 2013, no. 6, pp. 55–59 (in Russian).