REFRACTIVE INDEX NANOSENSOR USING PLASMONIC ENHANCEMENT OF PHOTOLUMINESCENCE
https://doi.org/10.29235/1561-8323-2018-62-2-164-169
Abstract
A refractive index nanosensor is proposed on the basis of plasmonic enhancement of quantum dot (nanocrystal) photoluminescence in the presence of a metal nanoparticle. Calculations of a silver elongated spheroid in the liquid show that the changes in the sensitivity of such a nanosensor to a refractive index can be of the order of 10–4 provided that the photoluminescence intensity detection is of the order of 1 %.
About the Authors
D. V. GuzatovBelarus
Ph. D. (Physics and Mathematics), Assistant Professor, Doctoral student
S. V. Gaponenko
Belarus
Academician, D. Sc. (Physics and Mathematics), Chief researcher
References
1. Klimov V. V. Nanoplasmonics. Singapore, Pan Stanford Publ., 2014. 598 p. DOI: 10.1201/b15442
2. Mayer K. M., Hafner J. H. Localized surface plasmon resonance sensors. Chemical Reviews, 2011, vol. 111, no. 6, pp. 3828–3857. DOI: 10.1021/cr100313v
3. Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, vol. 58, no. 1, pp. 267-297. DOI: 10.1146/annurev.physchem.58.032806.104607
4. Tam F., Moran C., Halas N. Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. The Journal of Physical Chemistry B, 2004, vol. 108, no. 45, pp. 17290–17294. DOI: 10.1021/ jp048499x
5. Wang H., Brandl D. W., Le F., Nordlander P., Halas N. J. Nanorice: a hybrid plasmonic nanostructure. Nano Letters, 2006, vol. 6, no. 4, pp. 827–832. DOI: 10.1021/nl060209w
6. Markov D., Begari D., Bornhop D. J. Breaking the 10–7 barrier for RI measurements in nanoliter volumes. Analytical Chemistry, 2002, vol. 74, no. 20, pp. 5438–5441. DOI: 10.1021/ac020403c
7. Trotsyuk L. L., Kulakovich O. S., Shabunya-Klyachkovskaya E. V., Gaponenko S. V., Vashchenko S. V. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016, vol. 60, no. 4, pp. 44–49 (in Russian).
8. Guzatov D. V., Vaschenko S. V., Stankevich V. V., Lunevich A. Yu., Glukhov Yu. F., Gaponenko S. V. Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. The Journal of Physical Chemistry C, 2012, vol. 116, no. 19, pp. 10723–10733. DOI: 10.1021/jp301598w
9. Stratton J. A. Electromagnetic Theory. New York, McGraw-Hill, 1941. 648 p.
10. Abramowitz M., Stegun I. A. (eds.) Handbook of Mathematical Functions. Washington (DC), National Bureau of Standards, 1964. 1046 p.
11. Klimov V. V., Ducloy M., Letokhov V. S. Spontaneous emission of an atom placed near a prolate nanospheroid. The European Physical Journal D, 2002, vol. 20, no. 1, pp. 133–148. DOI: 10.1140/epjd/e2002-00107-2
12. Johnson P. B., Christy R. W. Optical constants of the noble metals. Physical Review B, 1972, vol. 6, no. 12, pp. 4370– 4379. DOI: 10.1103/physrevb.6.4370
13. Gaponenko S. V. Introduction to Nanophotonics. Cambridge, Cambridge University Press, 2010. 465 p. DOI: 10.1017/ CBO9780511750502