Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

FULLERENOL-POLYAMIDE THIN FILM COMPOSITE HOLLOW FIBER MEMBRANES FOR LOW MOLECULAR WEIGHT CUT-OFF ULTRAFILTRATION

https://doi.org/10.29235/1561-8323-2018-62-2-185-192

Abstract

Fullerenol C60(OH)24 was incorporated into a polyamide (PA) selective layer to develop novel thin film nanocomposite (TFN) hollow fiber membranes for low molecular weight cut-off ultrafiltration. TFN membranes were fabricated using the interfacial polycondensation technique by alternately pumping a fullerenol dispersion into the triethylenetetramine (TETA) aqueous solution and the isophthaloyl chloride solution into hexane through polysulfone hollow fiber membranes. The contact angle of the skin layer was found to decrease sharply from 34 to 21° when the concentration of fullerenol increases up to 0.5 wt. % in the TETA aqueous solution. Antifouling properties of the PA/fullerenol membranes were found to be superior to the initial membrane. The maximum fouling recovery ratio was observed for the TFN membrane with 0.3–0.75 wt. % of fullerenol in the TETA aqueous solution.

 

About the Authors

A. V. Bildyukevich
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Academician, D. Sc. (Chemistry), Professor, Director


T. V. Plisko
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D (Chemistry), Senior researcher


A. S. Liubimova
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Researcher


A. V. Penkova
Saint-Petersburg State University, Saint Petersburg
Russian Federation
Ph. D. (Chemistry), Associate Professor


M. E. Dmitrenko
Saint-Petersburg State University, Saint Petersburg
Russian Federation
Assistant


References

1. Xu G.-R., Wang J.-N., Li C.-J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination, 2013, vol. 328, pp. 83–100. DOI: 10.1016/j.desal.2013.08.022

2. Fathizadeh M., Aroujalian A., Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science, 2011, vol. 375, no. 1–2, pp. 88–95. DOI: 10.1016/j.memsci.2011.03.017

3. Ong C. S., Goh P. S., Lau W. J., Misdan N., Ismail A. F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination, 2016, vol. 393, pp. 2–15. DOI: 10.1016/j.desal.2016.01.007

4. Lee S. Y., Kim H. J., Patel R., Im S. J., Kim J. H., Min B. R. Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polymers for Advanced Technologies, 2007, vol. 18, no. 7, pp. 562–568. DOI: 10.1002/pat.918

5. Tiraferri A., Kang Y., Giannelis E. P., Elimelech M. Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles. ACS Applied Materials & Interfaces, 2012, vol. 4, no. 9, pp. 5044–5053. DOI: 10.1021/am301532g

6. Daer S., Kharraz J., Giwa A., Hasan S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 2015, vol. 367, pp. 37–48. DOI: 10.1016/j.desal.2015.03.030

7. Goh P. S., Ismail A. F., Hilal N. Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination. Desalination, 2016, vol. 380, pp. 100–104. DOI: 10.1016/j.desal.2015.06.002

8. Misdan N., Ismail A. F., Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination, 2016, vol. 380, pp. 105–111. DOI: 10.1016/j.desal.2015.06.001

9. Isawi H., El-Sayed M. H., Feng X., Shawky H., Mottaleb Abdel M. S. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Applied Surface Science, 2016, vol. 385, pp. 268–281. DOI: 10.1016/j.apsusc.2016.05.141

10. Ghanbari M., Emadzadeh D., Lau W. J., Lai S. O., Matsuura T., Ismail A. F. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 2015, vol. 358, pp. 33–41. DOI: 10.1016/j.desal.2014.11.035

11. Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. Journal of Membrane Science, 2014, vol. 450, pp. 249– 256. DOI: 10.1016/j.memsci.2013.09.014

12. Bildyukevich A. V., Plisko T. V., Liubimova A. S., Volkov V. V., Usosky V. V. Hydrophilization of polysulfone hollow fiber membranes via addition of polyvinylpyrrolidone to the bore fluid. Journal of Membrane Science, 2017, vol. 524, pp. 537–549. DOI: 10.1016/j.memsci.2016.11.042

13. Liubimova A. S., Bildyukevich A. V., Melnikova G. B., Volkov V. V. Modification of hollow fiber ultrafiltration membranes by interfacial polycondensation: Monomer ratio effect. Petroleum Chemistry, 2015, vol. 55, no. 10, pp. 795–802. DOI: 10.1134/s0965544115100138

14. Semenov K. N., Charykov N. A., Postnov V. N., Sharoyko V. V., Vorotyntsev I. V., Galagudza M. M., Murin I. V. Fullerenols: Physicochemical properties and applications. Progress in Solid State Chemistry, 2016, vol. 44, no. 2, pp. 59–74. DOI: 10.1016/j.progsolidstchem.2016.04.002


Review

Views: 877


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)