Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Protective effect of brasinosteroid salicilates on spring barley plants exposed to biotic stress

https://doi.org/10.29235/1561-8323-2019-63-3-304-311

Abstract

In laboratory experiments, salicylates 24-epibrassinolide, 24-epicastasterone and the first synthesized 6-deoxo-24-epicastasterone salicylate act as inducers of plant immunity under biotic stress on the model phytopathosystem of barley-phytopathogenic fungus Helminthosporium teres Sacc. In small-scale field experiments, it was shown that the treatment of plants with brassinosteroid salicylates has a stimulating effect on the formation of protective physiological and biochemical reactions of plants. The most active protective effect exhibited salicylate 24-epibrassinolide.

About the Authors

N. E. Manzhalesava
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Manzhalesava Neli Yevgenievna – Ph. D. (Biology), Leading researcher

27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus



R. P. Litvinovskaya
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Litvinovskaya Raisa Pavlovna – D. Sc. (Chemistry), Chief researcher

5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus



S. N. Poljanskaja
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Poljanskaja Svetlana Nikolaevna – Ph. D. (Biology), Researcher

27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus



L. A. Karytsko
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Karytsko Larisa Aleksandrovna – Researcher

27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus



A. P. Savachka
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Savachka Aleh Petrovich – Researcher

5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus



References

1. Khripach V., Zhabinskii V., de Groot A. Twenty years of Brassinosteroids: Steroidal Plant Hormones Warrant Better Crops for the XXI Century. Annals of Botany, 2000, vol. 86, no. 3, pp. 441–447. https://doi.org/10.1006/anbo.2000.1227

2. Bajguz A., Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 2009, vol. 47, no. 1, pp. 1–8. https://doi.org/10.1016/j.plaphy.2008.10.002

3. Divi U. K., Rahman T., Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 2010, vol. 10, no. 1, pp. 151–164. https://doi.org/10.1186/1471-2229-10-151

4. Tanveer M., Shahzad B., Sharma A., Biju S., Bhardwaj R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 2018, vol. 130, pp. 69–79. https://doi.org/10.1016/j.plaphy.2018.06.035

5. Litvinovskaya R. P., Vayner A. A., Zhylitskaya H. A., Kolupaev Y. E., Savachka A. P., Khripach V. A. Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. Chemistry of Natural Compounds, 2016, vol. 52, no. 3, pp. 452–457. https://doi.org/10.1007/s10600-016-1671-y

6. Litvinovskaya R. P., Minin P. S., Raiman M. E., Zhilitskaya G. A., Kurtikova A. L., Kozharnovich K. G., Derevyanchuk M. V., Kravets V. S., Khripach V. A. Indolyl-3-acetoxy derivatives of brassinosteroids: synthesis and growth-regulating activity. Chemistry of Natural Compounds, 2013, vol. 49, no. 3, pp. 478–485. https://doi.org/10.1007/s10600-013-0643-8

7. Johnson M. M., Naidoo J. M., Fernandes M. A., Mmutlane E. M., van Otterlo W. A. L., de Koning C. B. CAN-Mediated oxidations for the Synthesis of Xanthones and Related Products. Journal of Organic Chemistry, 2010, vol. 75, no. 24, pp. 8701–8704. https://doi.org/10.1021/jo101873v

8. Konovalova G. S. Comparative characteristics of populations of the causative agent of barley rhynchosporiosis from Russia and Uzbekistan. Fitosanitarnoe ozdorovlenie ekosistem: materialy vtorogo Vserossiiskogo s’ezda po zashchite rastenii: v 2 t. [Phytosanitary improvement of ecosystems: materials of the second All-Russian Congress on Plant Protection: in 2 vol.]. St. Petersburg, 2005, vol. 1, pp. 484–486 (in Russian).

9. Gavrilenko V. F., Ladygina М. Е., Handobina L. M. Great workshop on plant physiology. Мoscow, 1975, pp. 283–285 (in Russian).

10. Oleinikova T. V., Udovenko G. V., Barashkova E. A., Vinogradova V. V., Volkova A. M., Kozhushko N. N., Sinel’nikova V. N. (eds). Methods for assessing plant resistance to adverse environmental conditions. Leningrad, 1976, pp. 33– 43 (in Russian).

11. de Vos C. H. R., Schat H., Vooijs R., Ernst W. H. O. Copper-induced Damage to the Permeability Barrier in Roots of Silene cucubalus. Journal of Plant Physiology, 1989, vol. 135, no. 2, pp. 164–169. https://doi.org/10.1016/s0176-1617(89)80171-3

12. Tjuterev S. L. Scientific foundations of induced disease resistance of plants. St. Petersburg, 2002. 328 p. (in Russian).

13. Voronkov L. A., Perova I. A. Plant photosynthetic apparatus during pathogenesis. Sel’skokhozyaistvennaya biologiya = Agricultural Biology, 1978, vol. 13, pp. 683–693 (in Russian).

14. Nedved E. L. The state of antioxidant systems in the pathogenesis of cereal crops. Minsk, 2010. 21 p. (in Russian).


Review

Views: 1117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)