Immunohistochemical proofs of the efficiency of hyaluronic acid in keratopathy treatment
https://doi.org/10.29235/1561-8323-2019-63-3-343-349
Abstract
An analysis of changes in the CD44 and MMP9 expression during the keratopathy after corneal inflammatory diseases treatment with injected hyaluronic acid is presented.
About the Authors
G. R. SemakBelarus
Semak Galina Romanovna – Ph. D. (Medicine), Associate professor
83, Dzerzhinsky Ave., 220116, Minsk, Republic of Belarus
V. A. Zakharova
Belarus
Zaharova Viktoriya Alekseevna – Ph. D. (Medicine), Associate professor
83, Dzerzhinsky Ave., 220116, Minsk, Republic of Belarus
S. K. Kletsky
Belarus
Kletsky Semen Kivovich – Ph. D. (Medicine), Associate professor
83, Dzerzhinsky Ave., 220116, Minsk, Republic of Belarus
T. A. Letkovskaya
Belarus
Letkovskaya Tatiana Anatolievna – Ph. D. (Medicine), Associate professor
83, Dzerzhinsky Ave., 220116, Minsk, Republic of Belarus
I. Yu. Zherko
Belarus
Zherko Irina Yurievna – Student
83, Dzerzhinsky Ave., 220116, Minsk, Republic of Belarus
References
1. Ezra D. B. Blefaritis and Conjunctivitis. Guidelines for Diagnosis and Treatment. International ocular Inflammation Society, 2006, pp. 10–18.
2. Semak G. R., Gerco I. Y. Clinical results of complex treatment of keratopathies in the outcome of inflammatory diseases of the anterior segment of the eyeball using the injectable form of hyaluronic acid. Meditsinskii zhurnal = Medical Journal, 2019, no. 1, pp. 97–100 (in Russian).
3. Semak G. R., Lyudchik A. V., Zherko I. Yu. New approach to treating chronic dystrophic cornea diseases. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no. 6, pp. 719–724 (in Russian). https://doi.org/10.29235/1561-8323-2018-62-6-719-724
4. Travis J. A., Hughes M. G., Wong J. M., Wagner W. D., Geary R. L. Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts: role of CD44 and implications for constrictive remodeling. Circulation Research, 2001, vol. 88, no. 1, pp. 77–83. https://doi.org/10.1161/01.res.88.1.77
5. Chen C.-H., Wang S.-S., Wei E. I., Chu T.-Y., Hsieh P. C. H. Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Molecular Therapy, 2013, vol. 21, no. 3, pp. 670–679. https://doi.org/10.1038/mt.2012.268
6. Bourguignon L. Y. W., Wong G., Xia W., Man M.-Q., Holleran W. M., Elias P. M. Selective matrix (hyaluronan) interaction with CD44 and RhoGTPase signaling promotes keratinocyte functions and overcomes age-related epidermaldysfunction. Journal of Dermatological Science, 2013, vol. 72, no. 1, pp. 32–44. https://doi.org/10.1016/j.jdermsci.2013.05.003
7. TFOS DEWS II Introduction. The ocular Surface. 2017. Available at: http://www.theocularsurfacejournal.com/article/S1542 (accessed 20 July 2018).
8. Arnold F., Jia C., He C., Cherry G. W., Carbow B., Meyer-Ingold W., Bader D., West D. C. Hyaluronan, heterogeneity, and healing: the effects of ultrapure hyaluronan of defined molecular size on the repair of full-thickness pig skin wounds. Wound Repair Regen, 1995, vol. 3, no. 3, pp. 299–310. https://doi.org/10.1046/j.1524-475x.1995.30310.x
9. Medeiros C. S., Marino G. K., Santhiago M. R., Wilson S. E. The Corneal Basement Membranes and Stromal Fibrosis. Investigative Opthalmology & Visual Science, 2018, vol. 59, no. 10, pp. 4044–4053. https://doi.org/10.1167/iovs.18-24428
10. Miron-Mendoza M., Graham E., Manohar S., Petroll W. M. Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices. Matrix Biology, 2017, vol. 64, pp. 69–80. https://doi.org/10.1016/j.matbio.2017.06.001