Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Physical fundamentals of low-temperature laser ablation of biotissues: quasi-continuous radiation mode

https://doi.org/10.29235/1561-8323-2019-63-4-421-429

Abstract

Applied to solving practical problems of extremely accurate laser surgery; the present study examines the conditions of deep, controlled, low-temperature dissection of biological tissues by quasi-continuous laser radiation of the infrared spectrum based on forming a directional wave of environmental enlightment.

About the Authors

George I. Zheltov
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Zheltov George Ivanovich – D. Sc. (Physics and Mathematics)

68-2, Nezavisimosti Ave., 220072, Minsk



Oleg G. Romanov
Belarusian State University
Belarus

Romanov Oleg Gennadievich – Head of the Department

4, Nezavisimosti Ave., 220030, Minsk



Wladimir D. Bourko
Republican Clinical Medical Centre
Belarus

Bourko Wladimir Dmitrievich – Ph. D. (Medicine), Doctor of the highest category

81, Zhdanovichy rural council, 223028, Minsk district



References

1. SCHWIND_AMARIS1050RS. The peak of performance. Available at: https://www.eye-tech-solutions.com/en/products/laser-systems/schwind-amaris-1050rs

2. Marshall J., Trokel S., Rothery S., Shubert H. An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm. Ophthalmology, 1985, vol. 92, no. 6, pp. 749–758. https://doi.org/10.1016/s0161-6420(85)33961-1

3. Pettit G. H., Ediger M. N., Weiblinger R. P. Excimer laser ablation of the cornea. Optical Engineering, 1995, vol. 34, no. 3, pp. 661–667. https://doi.org/10.1117/12.190408

4. Fisher B. T., Hahn D. W. Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser. Journal of the Optical Society of America A, 2007, vol. 24, no. 2, pp. 265–277. https://doi.org/10.1364/josaa.24.000265

5. Sliney D., Wolbarsht M. Safety with Lasers and Other Optical Sources. Boston, 1980. 1035 p. https://doi.org/10.1007/978-1-4899-3596-0

6. Terenin A. N. Photonics of dye molecules and related organic compounds. Leningrad, 1967. 616 p. (in Russian).

7. Zheltov G. I., Lisinetskii V. A., Grabtchikov A. S., Orlovich V. A. Low threshold cavitation in water using IR laser pulse trains. Applied Optics, 2008, vol. 47, no. 20, pp. 3549–3554. https://doi.org/10.1364/ao.47.003549

8. Zarembo L. K., Krasilnikov V. A. Introduction to nonlinear acoustics. Moscow, 1966. 519 p. (in Russian).

9. Baum O. I., Zheltov G. I., Omelchenko A. I., Romanov G. S., Romanov O. G., Sobol E. N. Тhermomerchanical effect of pulse-periodic laser radiation on cartilaginous and eye tissue. Laser Physics, 2013, vol. 23, no. 8, pp. 1–10. https://doi.org/10.1088/1054-660x/23/8/085602

10. Romanov O. G., Romanov G. S., Zheltov G. I. Numerical modelling of photo-thermal and photo-mechanical effects in absorbing biological structures under action of short laser pulses. Proceedings of SPIE, 2013, vol. 8803, pp. 88030P–88030P-7. https://doi.org/10.1117/12.2032462

11. Zheltov G. I., Romanov G. S., Romanov O. G. Thermomechanical action of pulce-periodic laser radiation on biotissues. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2013, no. 2, pp. 89–95 (in Russian).

12. Tuchin, V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. Third Edition. Bellingham, 2015. https://doi.org/10.1117/3.1003040

13. Koenz F., Frenz M., Pratisto H. S., Weber H. P., Silenok A. S., Konov V. I. Starting mechanisms of bubble formation induced by Ho:Tm:yAG laser in water. Proc. SPIE. – Laser-Tissue Interaction and Tissue Optics, 1996, vol. 2624, pp. 67–71. https://doi.org/10.1117/12.229539


Review

Views: 819


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)