Physical fundamentals of low-temperature laser ablation of biotissues: quasi-continuous radiation mode
https://doi.org/10.29235/1561-8323-2019-63-4-421-429
Abstract
Applied to solving practical problems of extremely accurate laser surgery; the present study examines the conditions of deep, controlled, low-temperature dissection of biological tissues by quasi-continuous laser radiation of the infrared spectrum based on forming a directional wave of environmental enlightment.
Keywords
About the Authors
George I. ZheltovBelarus
Zheltov George Ivanovich – D. Sc. (Physics and Mathematics)
68-2, Nezavisimosti Ave., 220072, Minsk
Oleg G. Romanov
Belarus
Romanov Oleg Gennadievich – Head of the Department
4, Nezavisimosti Ave., 220030, Minsk
Wladimir D. Bourko
Belarus
Bourko Wladimir Dmitrievich – Ph. D. (Medicine), Doctor of the highest category
81, Zhdanovichy rural council, 223028, Minsk district
References
1. SCHWIND_AMARIS1050RS. The peak of performance. Available at: https://www.eye-tech-solutions.com/en/products/laser-systems/schwind-amaris-1050rs
2. Marshall J., Trokel S., Rothery S., Shubert H. An Ultrastructural Study of Corneal Incisions Induced by an Excimer Laser at 193 nm. Ophthalmology, 1985, vol. 92, no. 6, pp. 749–758. https://doi.org/10.1016/s0161-6420(85)33961-1
3. Pettit G. H., Ediger M. N., Weiblinger R. P. Excimer laser ablation of the cornea. Optical Engineering, 1995, vol. 34, no. 3, pp. 661–667. https://doi.org/10.1117/12.190408
4. Fisher B. T., Hahn D. W. Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser. Journal of the Optical Society of America A, 2007, vol. 24, no. 2, pp. 265–277. https://doi.org/10.1364/josaa.24.000265
5. Sliney D., Wolbarsht M. Safety with Lasers and Other Optical Sources. Boston, 1980. 1035 p. https://doi.org/10.1007/978-1-4899-3596-0
6. Terenin A. N. Photonics of dye molecules and related organic compounds. Leningrad, 1967. 616 p. (in Russian).
7. Zheltov G. I., Lisinetskii V. A., Grabtchikov A. S., Orlovich V. A. Low threshold cavitation in water using IR laser pulse trains. Applied Optics, 2008, vol. 47, no. 20, pp. 3549–3554. https://doi.org/10.1364/ao.47.003549
8. Zarembo L. K., Krasilnikov V. A. Introduction to nonlinear acoustics. Moscow, 1966. 519 p. (in Russian).
9. Baum O. I., Zheltov G. I., Omelchenko A. I., Romanov G. S., Romanov O. G., Sobol E. N. Тhermomerchanical effect of pulse-periodic laser radiation on cartilaginous and eye tissue. Laser Physics, 2013, vol. 23, no. 8, pp. 1–10. https://doi.org/10.1088/1054-660x/23/8/085602
10. Romanov O. G., Romanov G. S., Zheltov G. I. Numerical modelling of photo-thermal and photo-mechanical effects in absorbing biological structures under action of short laser pulses. Proceedings of SPIE, 2013, vol. 8803, pp. 88030P–88030P-7. https://doi.org/10.1117/12.2032462
11. Zheltov G. I., Romanov G. S., Romanov O. G. Thermomechanical action of pulce-periodic laser radiation on biotissues. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2013, no. 2, pp. 89–95 (in Russian).
12. Tuchin, V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. Third Edition. Bellingham, 2015. https://doi.org/10.1117/3.1003040
13. Koenz F., Frenz M., Pratisto H. S., Weber H. P., Silenok A. S., Konov V. I. Starting mechanisms of bubble formation induced by Ho:Tm:yAG laser in water. Proc. SPIE. – Laser-Tissue Interaction and Tissue Optics, 1996, vol. 2624, pp. 67–71. https://doi.org/10.1117/12.229539