Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Formation of the IR photodetecting structures based on silicon hyperdoped with tellurium

https://doi.org/10.29235/1561-8323-2019-63-4-430-436

Abstract

The Si layers doped with Te up to the concentrations of (3–5)1020 cm–3 have been formed via ion implantation and pulsed laser melting. It is found, 70–90 % of the embedded impurity atoms are in substitution states in the silicon lattice. These layers have revealed significant absorption (35–66 %) in the wavelength λ range of 1100–2500 nm. In this case, the absorption coefficient increases with the λ growth. The absorption spectra of the implanted layers after pulsed laser melting, equilibrium furnace annealing, and rapid thermal annealing have been compared. It is shown that equilibrium furnace annealing increases the photon absorption by 4 % in the wavelength range of 1100–2500 nm in comparison with virgin Si. After rapid thermal annealing, the photon absorption in the IR-range increases only by 2 %.

About the Authors

Fadei F. Komarov
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University
Belarus

Komarov Fadey Fadeevich – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory

7, kurchatov Str., 220045, Minsk



Nikita S. Nechaev
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University
Belarus

Nechaev Nikita Sergeevich – Junior researcher Intern

7, kurchatov Str., 220045, Minsk



Irina N. Parkhomenko
Belarusian State University
Belarus

Parkhomenko Irina Nikolaevna – Ph. D. (Physics and Mathematics), Senior researcher

5, kurchatov Str., 220045, Minsk



Gennadii D. Ivlev
Belarusian State University
Belarus

Ivlev Gennadii Dmitrievich – Ph. D. (Physics and Mathematics), Leading researcher

5, kurchatov Str., 220045, Minsk



Liudmila A. Vlasukova
Belarusian State University
Belarus

Vlasukova Liudmila Aleksandrovna – Ph. D. (Physics and Mathematics), Head of the Laboratory

5, kurchatov Str., 220045, Minsk



Vladimir V. Pilko
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University
Belarus

Pilko Vladimir Vladimirovich – Junior researcher

7, kurchatov Str., 220045, Minsk



Elke Wendler
Friedrich-Schiller-Universität
Germany

Wendler Elke – Professor

1, Max Wein Platz, 07743, Jena



Alexander F. Komarov
A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University
Belarus

Komarov Alexander Fadeevich – D. Sc. (Physics and Mathematics), Chief researcher

7, kurchatov Str., 220045, Minsk



References

1. Carey J. E., Crouch C. H., Shen M., Mazur E. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Optics Letters, 2005, vol. 30, no. 14, pp. 1773–1775. https://doi.org/10.1364/ol.30.001773

2. Bob B., Kohno A., Charnvanichborikarm S., Warrender J. M., Umezu I., Tabbal M., Williams J. S., Aziz M. J. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. Journal of Applied Physics, 2010, vol. 107, art. 123506. https://doi.org/10.1063/1.3415544

3. Schibli E., Milnes A. G. Deep impurities in silicon. Materials Science and Engineering, 1967, vol. 2, no. 4, pp. 173–180. https://doi.org/10.1016/0025-5416(67)90056-0

4. Berencén y., Prucnal S., Liu F., Skorupa I., Hübner R., Rebohle L., Zhou Sh., Schneider H., Helm M., Skorupa W. Room-temperature short-wavelength infrared Si photodetector. Scientifc Reports, 2017, vol. 7, no. 1, art. 43688. https://doi.org/10.1038/srep43688

5. Shockley W., Queisser H. J. Detailed balance limit of efciency of p–n junction solar cells. Journal of Applied Physics, 1961, vol. 32, no. 3, pp. 510–519. https://doi.org/10.1063/1.1736034

6. Luque A., Martí A. Increasing the efciency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, vol. 78, no. 26, pp. 5014–5017. https://doi.org/10.1103/physrevlett.78.5014

7. Gossmann H. J., Rafferty C. S., keys P. Junctions for deep sub-100 nm MOS: How far will ion implantation take us? MRS Proceedings, 2000, vol. 610, pp. B1.2.1–B1.2.10. https://doi.org/10.1557/proc-610-b1.2

8. Gossmann H. J., Unterwald F. C., Luftman H. S. Doping of Si thin flms by low temperature molecular beam epitaxy. Journal of Applied Physics, 1993, vol. 73, no. 12, p. 8237−8241. https://doi.org/10.1063/1.353441

9. Ertekin E., Winkler M. T., Recht D., Said A. J., Aziz M. J., Buonassisi T., Grossma J. C. Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin. Physical Review Letters, 2012, vol. 108, no. 2, art. 026401. https://doi.org/10.1103/physrevlett.108.026401

10. Zhou S., Liu F., Prucnal S., Gao k., khalid M., Baehtz C., Posselt M., Skorupa W., Helm M. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy. Scientifc Reports, 2015, vol. 5, no. 1, art. 8329. https://doi.org/10.1038/srep08329

11. Wang M., Hübner R., Xu C., Xie y., Berencén y., Heller R., Rebohle L., Helm M., Prucnal S., Zhou S. Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical and optical properties. Physical Review Materials, 2019, vol. 3, no. 4, art. 044606. https://doi.org/10.1103/physrevmaterials.3.044606

12. Mayer, M. SIMNRA User’s Guide. Garching, 1997. 62 p.

13. komarov A. F., komarov F. F., Żukowski P., karwat C., Shukan A. L. Simulation of the process of high dose ion implantation in solid targets. Nukleonika, 1999, vol. 44, no. 2, pp. 363–368.

14. Feldman L. C., Mayer W., Picraux S. T. Materials analysis by ion channeling: Submicron crystallography. New york, 1982. 300 p.


Review

Views: 916


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)