Preview

Доклады Национальной академии наук Беларуси

Пашыраны пошук

Формирование фотоприемных структур ИК-диапазона путем пересыщения кремния теллуром

https://doi.org/10.29235/1561-8323-2019-63-4-430-436

Анатацыя

Слои кремния, легированные теллуром до концентраций (3–5)1020 см–3, получены ионной имплантацией с последующим импульсным лазерным отжигом. Показано, что 70–90 % внедренной примеси находится в позиции замещения в решетке кремния. Слои, гиперпересыщенные теллуром, проявляют существенное поглощение (35–66 %) в области длин волн 1100–2500 нм, причем коэффициент поглощения увеличивается с ростом длины волны. Проведено сравнение спектров поглощения имплантированных слоев после лазерного отжига, а также после равновесного и быстрого термического отжигов. Показано, что равновесный отжиг после имплантации ионов теллура увеличивает поглощение фотонов в области длин волн 1100–2500 нм на 4 % по сравнению с неимплантированным кремнием. После быстрого термического отжига поглощение в ИК-области возрастает лишь на 2 %.

Аб аўтарах

Ф. Комаров
Институт прикладных физических проблем имени А. Н. Севченко Белорусского государственного университета
Беларусь


Н. Нечаев
Институт прикладных физических проблем имени А. Н. Севченко Белорусского государственного университета
Беларусь


И. Пархоменко
Белорусский государственный университет
Беларусь


Г. Ивлев
Белорусский государственный университет
Беларусь


Л. Власукова
Белорусский государственный университет
Беларусь


В. Пилько
Институт прикладных физических проблем имени А. Н. Севченко Белорусского государственного университета
Беларусь


Э. Вендлер
Йенский университет имени Фридриха Шиллера
Германія


А. Комаров
Институт прикладных физических проблем имени А. Н. Севченко Белорусского государственного университета
Беларусь


Спіс літаратуры

1. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes / J. E. Carey [et al.] // Opt. Lett. – 2005. – Vol. 30, N 14. – P. 1773–1775. https://doi.org/10.1364/ol.30.001773

2. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting / B. Bob [et al.] // J. Appl. Phys. – 2010. – Vol. 107 – Art. 123506. https://doi.org/10.1063/1.3415544

3. Schibli, E. Deep impurities in silicon / E. Schibli, A. G. Milnes // Materials Science and Engineering. – 1967. – Vol. 2, N 4. – P. 173–180. https://doi.org/10.1016/0025-5416(67)90056-0

4. Room-temperature short-wavelength infrared Si photodetector / Y. Berencén [et al.] // Sci. Rep. – 2017. – Vol. 7, N 1. – Art. 43688. https://doi.org/10.1038/srep43688

5. Shockley, W. Detailed balance limit of efciency of p–n junction solar cells / W. Shockley, H. J. Queisser // J. Appl. Phys. – 1961. – Vol. 32, N 3. – P. 510–519. https://doi.org/10.1063/1.1736034

6. Luque, A. Increasing the efciency of ideal solar cells by photon induced transitions at intermediate levels / A. Luque, A. Martí // Phys. Rev. Lett. – 1997. – Vol. 78, N 26. – P. 5014–5017. https://doi.org/10.1103/physrevlett.78.5014

7. Gossmann, H. J. Junctions for deep sub-100 nm MOS: How far will ion implantation take us? / H. J. Gossmann, C. S. Rafferty, P. Keys // MRS Proceedings. – 2000. – Vol. 610. – P. B1.2.1–B1.2.10. https://doi.org/10.1557/proc-610-b1.2

8. Gossmann, H. J. Doping of Si thin flms by low temperature molecular beam epitaxy / H. J. Gossmann, F. C. Unterwald, H. S. Luftman // J. Appl. Phys. – 1993. – Vol. 73, N 12. – P. 8237−8241. https://doi.org/10.1063/1.353441

9. Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin / E. Ertekin [et al.] // Phys. Rev. Lett. – 2012. – Vol. 108, N 2. – Art. 026401. https://doi.org/10.1103/physrevlett.108.026401

10. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy / S. Zhou [et al.] // Sci. Rep. – 2015. – Vol. 5, N 1. – Art. 8329. https://doi.org/10.1038/srep08329

11. Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical and optical properties / M. Wang [et al.] // Phys. Rev. Materials. – 2019. – Vol. 3, N 4. – Art. 044606. https://doi.org/10.1103/physrevmaterials.3.044606

12. Mayer, M. SIMNRA User’s Guide / M. Mayer. – Garching, 1997. – 62 p.

13. Simulation of the process of high dose ion implantation in solid targets / A. F. Komarov [et al.] // Nukleonika. – 1999. – Vol. 44, N 2. – P. 363–368.

14. Feldman, L. C. Materials analysis by ion channeling: Submicron crystallography / L. C. Feldman, J. W. Mayer, S. T. Picraux. – New York, 1982. – 300 p.


##reviewer.review.form##

Праглядаў: 911


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)