Formation of the IR photodetecting structures based on silicon hyperdoped with tellurium
https://doi.org/10.29235/1561-8323-2019-63-4-430-436
Abstract
The Si layers doped with Te up to the concentrations of (3–5)1020 cm–3 have been formed via ion implantation and pulsed laser melting. It is found, 70–90 % of the embedded impurity atoms are in substitution states in the silicon lattice. These layers have revealed significant absorption (35–66 %) in the wavelength λ range of 1100–2500 nm. In this case, the absorption coefficient increases with the λ growth. The absorption spectra of the implanted layers after pulsed laser melting, equilibrium furnace annealing, and rapid thermal annealing have been compared. It is shown that equilibrium furnace annealing increases the photon absorption by 4 % in the wavelength range of 1100–2500 nm in comparison with virgin Si. After rapid thermal annealing, the photon absorption in the IR-range increases only by 2 %.
About the Authors
Fadei F. KomarovBelarus
Komarov Fadey Fadeevich – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory
7, kurchatov Str., 220045, Minsk
Nikita S. Nechaev
Belarus
Nechaev Nikita Sergeevich – Junior researcher Intern
7, kurchatov Str., 220045, Minsk
Irina N. Parkhomenko
Belarus
Parkhomenko Irina Nikolaevna – Ph. D. (Physics and Mathematics), Senior researcher
5, kurchatov Str., 220045, Minsk
Gennadii D. Ivlev
Belarus
Ivlev Gennadii Dmitrievich – Ph. D. (Physics and Mathematics), Leading researcher
5, kurchatov Str., 220045, Minsk
Liudmila A. Vlasukova
Belarus
Vlasukova Liudmila Aleksandrovna – Ph. D. (Physics and Mathematics), Head of the Laboratory
5, kurchatov Str., 220045, Minsk
Vladimir V. Pilko
Belarus
Pilko Vladimir Vladimirovich – Junior researcher
7, kurchatov Str., 220045, Minsk
Elke Wendler
Germany
Wendler Elke – Professor
1, Max Wein Platz, 07743, Jena
Alexander F. Komarov
Belarus
Komarov Alexander Fadeevich – D. Sc. (Physics and Mathematics), Chief researcher
7, kurchatov Str., 220045, Minsk
References
1. Carey J. E., Crouch C. H., Shen M., Mazur E. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Optics Letters, 2005, vol. 30, no. 14, pp. 1773–1775. https://doi.org/10.1364/ol.30.001773
2. Bob B., Kohno A., Charnvanichborikarm S., Warrender J. M., Umezu I., Tabbal M., Williams J. S., Aziz M. J. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. Journal of Applied Physics, 2010, vol. 107, art. 123506. https://doi.org/10.1063/1.3415544
3. Schibli E., Milnes A. G. Deep impurities in silicon. Materials Science and Engineering, 1967, vol. 2, no. 4, pp. 173–180. https://doi.org/10.1016/0025-5416(67)90056-0
4. Berencén y., Prucnal S., Liu F., Skorupa I., Hübner R., Rebohle L., Zhou Sh., Schneider H., Helm M., Skorupa W. Room-temperature short-wavelength infrared Si photodetector. Scientifc Reports, 2017, vol. 7, no. 1, art. 43688. https://doi.org/10.1038/srep43688
5. Shockley W., Queisser H. J. Detailed balance limit of efciency of p–n junction solar cells. Journal of Applied Physics, 1961, vol. 32, no. 3, pp. 510–519. https://doi.org/10.1063/1.1736034
6. Luque A., Martí A. Increasing the efciency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, vol. 78, no. 26, pp. 5014–5017. https://doi.org/10.1103/physrevlett.78.5014
7. Gossmann H. J., Rafferty C. S., keys P. Junctions for deep sub-100 nm MOS: How far will ion implantation take us? MRS Proceedings, 2000, vol. 610, pp. B1.2.1–B1.2.10. https://doi.org/10.1557/proc-610-b1.2
8. Gossmann H. J., Unterwald F. C., Luftman H. S. Doping of Si thin flms by low temperature molecular beam epitaxy. Journal of Applied Physics, 1993, vol. 73, no. 12, p. 8237−8241. https://doi.org/10.1063/1.353441
9. Ertekin E., Winkler M. T., Recht D., Said A. J., Aziz M. J., Buonassisi T., Grossma J. C. Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin. Physical Review Letters, 2012, vol. 108, no. 2, art. 026401. https://doi.org/10.1103/physrevlett.108.026401
10. Zhou S., Liu F., Prucnal S., Gao k., khalid M., Baehtz C., Posselt M., Skorupa W., Helm M. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy. Scientifc Reports, 2015, vol. 5, no. 1, art. 8329. https://doi.org/10.1038/srep08329
11. Wang M., Hübner R., Xu C., Xie y., Berencén y., Heller R., Rebohle L., Helm M., Prucnal S., Zhou S. Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical and optical properties. Physical Review Materials, 2019, vol. 3, no. 4, art. 044606. https://doi.org/10.1103/physrevmaterials.3.044606
12. Mayer, M. SIMNRA User’s Guide. Garching, 1997. 62 p.
13. komarov A. F., komarov F. F., Żukowski P., karwat C., Shukan A. L. Simulation of the process of high dose ion implantation in solid targets. Nukleonika, 1999, vol. 44, no. 2, pp. 363–368.
14. Feldman L. C., Mayer W., Picraux S. T. Materials analysis by ion channeling: Submicron crystallography. New york, 1982. 300 p.