Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Минимальные полиномы унипотентных элементов непростого порядка в неприводимых представлениях исключительных алгебраических групп в некоторых хороших характеристиках


https://doi.org/10.29235/1561-8323-2019-63-5-519-525

Полный текст:


Аннотация

Представлено академиком В. И. Янчевским

В ряде случаев найдены минимальные многочлены образов унипотентных элементов непростого порядка в неприводимых представлениях исключительных алгебраических групп в хороших характеристиках. Установлено, что если p > 5 для группы типа Е8 и p > 3 для других исключительных алгебраических групп, то для неприводимых представлений этих групп в характеристике p с большими относительно характеристики старшими весами степень минимального многочлена образа унипотентного элемента равна порядку этого элемента.


Об авторах

Т. С. Бусел
Институт математики, Национальная академия наук Беларуси
Беларусь

Бусел Татьяна Сергеевна - кандидат физико-математических наук, научный сотрудник.

Ул. Сурганова, 11, 220072, Минск



И. Д. Супруненко
Институт математики, Национальная академия наук Беларуси
Беларусь

Супруненко Ирина Дмитриевна - доктор физико-математических наук, главный научный сотрудник.

Ул. Сурганова, 11, 220072, Минск



Д. Тестерман
Институт математики, Федеральная политехническая школа Лозанны
Швейцария

Тестерман Донна - профессор.

MA B3 434 (Station 8), CH-1015 Лозанна



Список литературы

1. Suprunenko I. D. The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic. Memoirs of the American Mathematical Society, 2009, vol. 200, no. 939. https://doi.org/10.1090/memo/0939

2. Suprunenko I. D. Minimal polynomials of elements of orderp in irreducible representations of Chevalley groups over fields of characteristic p. Siberian Advances in Mathematics, 1996, vol. 6, pp. 97-150.

3. Steinberg R. Lectures on Chevalley groups. University Lecture Series, 2016, vol. 66. https://doi.org/10.1090/ulect/066

4. Lawther R. Jordan block sizes of unipotent elements in exceptional algebraic groups. Communications in Algebra, 1995, vol. 23, no. 11, pp. 4125-4156. https://doi.org/10.1080/00927879508825454

5. Steinberg R. Representations of algebraic groups. Nagoya Mathematical Journal, 1963, vol. 22, pp. 33-56. https://doi.org/10.1017/s0027763000011016

6. James G. D. The representation theory of the symmetric groups. Lecture Notes in Mathematics. Vol. 682. Berlin, 1978. https://doi.org/10.1007/BFb0067708

7. Feit W. The representation theory offinite groups. North-Holland, Amsterdam, 1982. https://doi.org/10.1016/s0924-6509(08)x7025-4

8. Gudivok P M., Rudko V. P Tensor products of representations offinite groups. Uzhgorod, 1985 (in Russian).

9. Suprunenko I. D. Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks. Journal of Mathematical Sciences, 2014, vol. 199, no. 3, pp. 350-374. https://doi.org/10.1007/s10958-014-1863-6

10. Spaltenstein N. Classes unipotentes et sous-groupes de Borel. Lecture Notes in Mathematics. Vol. 946. Berlin, Heidelberg, 1982. https://doi.org/10.1007/bfb0096302

11. Seitz G. M. The maximal subgroups of classical algebraic groups. Memoirs of the American Mathematical Society, 1987, vol. 67, no. 365. https://doi.org/10.1090/memo/0365


Дополнительные файлы

Просмотров: 61

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)