On partial calmness for bilevel programming problems with lower-level problem linear in lower-level variable
https://doi.org/10.29235/1561-8323-2019-63-5-526-532
Abstract
Communicated by Corresponding Member Valentine V. Gorokhovik
In the paper the Lipschitz-like properties of solution mapping of lower-level problems for bilevel programs are studied and sufficient conditions for partial calmness are proved on the basis of these properties.
About the Authors
Leonid I. MinchenkoBelarus
Minchenko Leonid Ivanovich - D. Sc. (Physics and Mathematics), Professor.
6, P. Brovka Str., 220013, Minsk
Sergey I. Sirotko
Belarus
Sirotko Sergey Ivanovich - Ph. D. (Physics and Mathematics), Assosiate professor.
6, P. Brovka Str., 220013, MinskReferences
1. Dempe S. Foundations of Bilevel programming. Dordrecht, Boston, London, 2002. 282 p. https://doi.org/10.1007/b101970
2. Bard J. F. Practical Bilevel Optimization. Dordrecht, Boston, London, 1998. 454 p. https://doi.org/10.1007/978-1-4757-2836-1
3. Outrata J. V. A note on the usage of nondifferentiable exact penalties in some special optimization Problems. Kybernetika, 1988, vol. 24, no. 4, pp. 251-258.
4. Ye J. J., Zhu D. L. Optimality conditions for bilevel programming problems. Optimization, 1995, vol. 33, no. 1, pp. 9-27. https://doi.org/10.1080/02331939508844060
5. Ye J. J., Zhu D. L. New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM Journal on Optimization, 2010, vol. 20, no. 4, pp. 1885-1905. https://doi.org/10.1137/080725088
6. Dempe S., Dutta J., Mordukhovich B. S. New necessary optimality conditions in optimistic bilevel programming. Optimization, 2007, vol. 56, no. 5-6, pp. 577-604. https://doi.org/10.1080/02331930701617551
7. Henrion R., Surowiec T. M. On calmness conditions in convex bilevel programming. Applicable Analysis, 2011, vol. 90, no. 6, pp. 951-970. https://doi.org/10.1080/00036811.2010.495339
8. Minchenko L. I., Bereznov D. E. On global partial calmness for bilevel programming problems with linear lower-level problem. Proceedings of Conference OPTIMA-2017, Petrovac, Montenegro, 2017, pp. 412-419.
9. Dempe S., Zemkoho A. B. The bilevel programming: reformulations, constraint qualifications and optimality conditions. Mathematical Programming, 2013, vol. 138, no. 1-2, pp. 447-473. https://doi.org/10.1007/s10107-011-0508-5
10. Minchenko L. I., Stakhovski S. M. On relaxed constant rank regularity condition in mathematical programming. Optimization, 2011, vol. 60, no. 4, pp. 429-440. https://doi.org/10.1080/02331930902971377
11. Minchenko L., Stakhovski S. Parametric nonlinear programming problems under the relaxed constant rank condition. SIAM Journal on Optimization, 2011, vol. 21, no. 1, pp. 314-332. https://doi.org/10.1137/090761318
12. Fedorov V. V. Numerical Maximilian Methods. Moscow, 1979. 280 p. (in Russian).
13. Luderer B., Minchenko L., Satsura T. Multivalued analysis and nonlinear programming problems with perturbations. Dordrecht; Boston; London, 2002. - 210 p. https://doi.org/10.1007/978-1-4757-3468-3
14. Rockafellar R. T., Wets R. J.-B. Variational analysis. Berlin, 1998. 734 p. https://doi.org/10.1007/978-3-642-02431-3
15. Clarke F. Optimization and nonsmooth analysis. Moscow, 1988. 280 p. (in Russian).