Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

On partial calmness for bilevel programming problems with lower-level problem linear in lower-level variable

https://doi.org/10.29235/1561-8323-2019-63-5-526-532

Abstract

Communicated by Corresponding Member Valentine V. Gorokhovik

In the paper the Lipschitz-like properties of solution mapping of lower-level problems for bilevel programs are studied and sufficient conditions for partial calmness are proved on the basis of these properties.

About the Authors

Leonid I. Minchenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Minchenko Leonid Ivanovich - D. Sc. (Physics and Mathematics), Professor.

6, P. Brovka Str., 220013, Minsk



Sergey I. Sirotko
Belarusian State University of Informatics and Radioelectronics
Belarus

Sirotko Sergey Ivanovich - Ph. D. (Physics and Mathematics), Assosiate professor.

6, P. Brovka Str., 220013, Minsk


References

1. Dempe S. Foundations of Bilevel programming. Dordrecht, Boston, London, 2002. 282 p. https://doi.org/10.1007/b101970

2. Bard J. F. Practical Bilevel Optimization. Dordrecht, Boston, London, 1998. 454 p. https://doi.org/10.1007/978-1-4757-2836-1

3. Outrata J. V. A note on the usage of nondifferentiable exact penalties in some special optimization Problems. Kybernetika, 1988, vol. 24, no. 4, pp. 251-258.

4. Ye J. J., Zhu D. L. Optimality conditions for bilevel programming problems. Optimization, 1995, vol. 33, no. 1, pp. 9-27. https://doi.org/10.1080/02331939508844060

5. Ye J. J., Zhu D. L. New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM Journal on Optimization, 2010, vol. 20, no. 4, pp. 1885-1905. https://doi.org/10.1137/080725088

6. Dempe S., Dutta J., Mordukhovich B. S. New necessary optimality conditions in optimistic bilevel programming. Optimization, 2007, vol. 56, no. 5-6, pp. 577-604. https://doi.org/10.1080/02331930701617551

7. Henrion R., Surowiec T. M. On calmness conditions in convex bilevel programming. Applicable Analysis, 2011, vol. 90, no. 6, pp. 951-970. https://doi.org/10.1080/00036811.2010.495339

8. Minchenko L. I., Bereznov D. E. On global partial calmness for bilevel programming problems with linear lower-level problem. Proceedings of Conference OPTIMA-2017, Petrovac, Montenegro, 2017, pp. 412-419.

9. Dempe S., Zemkoho A. B. The bilevel programming: reformulations, constraint qualifications and optimality conditions. Mathematical Programming, 2013, vol. 138, no. 1-2, pp. 447-473. https://doi.org/10.1007/s10107-011-0508-5

10. Minchenko L. I., Stakhovski S. M. On relaxed constant rank regularity condition in mathematical programming. Optimization, 2011, vol. 60, no. 4, pp. 429-440. https://doi.org/10.1080/02331930902971377

11. Minchenko L., Stakhovski S. Parametric nonlinear programming problems under the relaxed constant rank condition. SIAM Journal on Optimization, 2011, vol. 21, no. 1, pp. 314-332. https://doi.org/10.1137/090761318

12. Fedorov V. V. Numerical Maximilian Methods. Moscow, 1979. 280 p. (in Russian).

13. Luderer B., Minchenko L., Satsura T. Multivalued analysis and nonlinear programming problems with perturbations. Dordrecht; Boston; London, 2002. - 210 p. https://doi.org/10.1007/978-1-4757-3468-3

14. Rockafellar R. T., Wets R. J.-B. Variational analysis. Berlin, 1998. 734 p. https://doi.org/10.1007/978-3-642-02431-3

15. Clarke F. Optimization and nonsmooth analysis. Moscow, 1988. 280 p. (in Russian).


Review

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)