Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Regression and analytical calculations of radiative transfer for the fluorescent diagnostics of biological media

https://doi.org/10.29235/1561-8323-2019-63-5-533-541

Abstract

Communicated by Academician Vladimir A. Kulchitsky

A rapid method for correction of the influence of light scattering and absorption in biological tissues on their fluorescent images is proposed. To speed up the calculations of a medium transfer function a regression and analytical descriptions of light fields at the fluorescence excitation and emission wavelengths are used. The required information on the absorbance of a medium is extracted from components of its colored image. The effectiveness of the method is estimated on the images of biological phantoms obtained by the Monte Carlo simulations.

About the Authors

Sergey A. Lysenko
Institute for Nature Management, National Academy of Sciences of Belarus
Russian Federation

Lysenko Sergey Aleksandrovich - D. Sc. (Physics and Mathematics), Associate professor, Head of the Center, Deputy Director.

10, F. Skorina Str., 220114, Minsk



Eduard S. Kashitsky
Institute of Physiology, National Academy of Sciences of Belarus
Russian Federation

Kashitsky Eduard Stepanovich - Ph. D. (Medicine), Associate professor, Leading researcher.

28, Akademicheskaya Str., 220072, Minsk



Olga L. Bogdanovich
Universal Technologies of Health
Russian Federation

Bogdanovich Olga Leonidovna - Director.

62-206, Pritytsky Str., 220140, Minsk



References

1. Welch A. J., Gardner C., Richards-Kortum R., Chan E., Criswell G., Pfefer J., Warren S. Propagation of Fluorescent Light. Lasers in Surgery and Medicine, 1997, vol. 21, no. 2, pp. 166-178. https://doi.org/10.1002/(sici)1096-9101(1997)21:2%3C166::aid-lsm8%3E3.3.co;2-q

2. Chang S. K., Arifler D., Drezek R., Follen M., Richards-Kortum R. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements. Journal of Biomedical Optics, 2004, vol. 9, no. 3, pp. 511-522. https://doi.org/10.1117/1.1695559

3. Kokhanovsky A. A. Radiative properties of optically thick fluorescent turbid media. Journal of the Optical Society of America A, 2009, vol. 26, no. 8, pp. 1896-1900. https://doi.org/10.1364/josaa.26.001896

4. Kim A., Khurana M., Moriyama Y., Wilson B. C. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. Journal of Biomedical Optics, 2010, vol. 15, no. 6, pp. 067006-1-067006-12. https://doi.org/10.1117/1.3523616

5. Saager R. B., Cuccia D. J., Saggese S., Kelly K. M., Durkin A. J. Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. Journal of Biomedical Optics, 2011, vol. 16, no. 12, pp. 126013-1-126013-5. https://doi.org/10.11m.3665440

6. Lisenko S. A., Kugeiko M. M. Method for calculation of light field characteristics in optical diagnosis problems and personalized laser treatment of biological tissues. Journal of Applied Spectroscopy, 2013, vol. 80, no. 2, pp. 271-279. https://doi.org/10.1007/s10812-013-9757-9

7. Van Gemert M. J. C., Jacques S. L., Sterenborg H. J. C. M., Star W. M. Skin optics. IEEE Transactions on Biomedical Engineering, 1989, vol. 36, no. 12, pp. 1146-1154. https://doi.org/10.1109/10.42108

8. Zege E. P., Ivanov A. P., Katsev I. L. Image Transfer through a Scattering Medium. Heidelberg, 1991. 349 p. https://doi.org/10.1007/978-3-642-75286-5

9. Liou K. N. An introduction to atmospheric radiation. Second edition. New York, London, 2002. 583 p.

10. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005, vol. 38, no. 15, pp. 2543-2555. https://doi.org/10.1088/0022-3727/38/15/004

11. Salomatina E., Jiang B., Novak J., Yaroslavsky A. N. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. Journal of Biomedical Optics, 2006, vol. 11, no. 6, pp. 064026-1-064026-9. https://doi.org/10.1117/1.2398928

12. Meglinski I. V. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light. Quantum Electronics, 2001, vol. 31, no. 12, pp. 1101-1107. https://doi.org/10.1070/qe2001v031n12abeh002108

13. Lysenko S. A., Kugeiko M. M. Quantitative Multispectral Endoscopy. Measurement Techniques, 2014, vol. 56, no. 11, pp. 1302-1310. https://doi.org/10.1007/s11018-014-0372-9

14. Lisenko S. A. Method for Separation of Blood Vessels on the Three-Color Images of Biological Tissues. Journal of Applied Spectroscopy, 2017, vol. 84, no. 3, pp. 439-447. https://doi.org/10.1007/s10812-017-0489-0

15. Bashkatov A. N., Genina E. A., Kochubey V. I., Gavrilova A. A., Kapralov S. V., Grishaev V. A., Tuchin V. V. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: Prognosis for gastroenterology. Medical Laser Application, 2007, vol. 22, no. 2, pp. 95-104. https://doi.org/10.1016/j.mla.2007.07.003


Review

Views: 1037


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)