Environmental changes in the Late Glacial and Holocene in the southeast of Belarus
https://doi.org/10.29235/1561-8323-2019-63-5-584-596
Abstract
Communicated by Academician Aleksey V. Matveev
The reconstruction of environmental changes in the southeast of Belarus during the last 14700 cal. BP is based on the results of palynological, radiocarbon, isotope and lithological studies of Lake Staroje deposits. Climatic fluctuations, fires and human activities played a significant role in the transformation of the vegetation cover. The beginning of the lacustrine sedimentation was dated circa 16000 cal. BP. The intensification of erosion processes on the water catchment area was marked by an increase in the mineral material flow into the lake. These events have a positive correlation with the climate cooling and humidity phases in the Late Glacial and Early Holocene, and in the Late Holocene with anthropogenic impact stages. The traces of the episodic human activity were dated to 5800 cal. BP, while the expansion of farming and pasturing areas began at 3000 cal. BP Currently the consequences of human activities (including drainage of bogs) are reflected in the treeless landscapes adjacent to the lake.
About the Authors
Valentina P. ZernitskayaBelarus
Zernitskaya Valentina Petrovna - Ph. D. (Geography), Leading researcher.
10, F. Skorina Str., 220114, Minsk
Elena Yu. Novenko
Russian Federation
Novenko Elena Yurevna - D. Sc. (Geography), Leading researcher.
1, Le-ninskie Gory Str., 119991, Moscow
Migle Stančikaitė
Lithuania
Stancikaite Migle - D. Sc. (Geography), Leading researcher.
2, Akademijos Str., LT-08412, Vilnius
Boris P. Vlasov
Belarus
Vlasov Boris Pavlovich - D. Sc. (Geography), Head of the Laboratory.
4, Nezavisimosti Ave., 220030, Minsk
References
1. Lowe J. J., Rasmussen S. O., Bjorck S., Hoek W. Z., Steffensen J. P., Walker M. J. C., Yu Z. C. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews, 2008, vol. 27, no. 1-2, pp. 6-17. https://doi.org/10.1016/j.quascirev.2007.09.016
2. Stancikaite M., Kisieliene D., Moe D., Vaikutiene G. Lateglacial and early Holocene environmental changes in northeastern Lithuania. Quaternary International, 2009, vol. 207, no. 1-2, pp. 80-92. https://doi.org/10.1016/j.quaint. 2008.10.009
3. Hansen M., DeFries R. S., Townshend J. R. G., Carroll M., Dimiceli C., Sohlberg R. A. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interaction, 2003, vol. 7, no. 10, pp. 1-15. https://doi.org/10.1175/1087-3562(2003)007%3C0001:gptcaa%3E2.0.co;2
4. Novenko E. Yu. Vegetation and climate changes in the Central and Eastern Europe in the Late Pleistocene and Holocene at the Interglacial and transitional stages of climatic macro-cycles. Мoscow, 2016. 228 р. (in Russian).
5. Makhnach N., Zernitskaya V., Kolosov I., Simakova G. Stable oxygen and carbon isotopes in Late GlacialeHolocene freshwater carbonates from Belarus and their palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, vol. 209, no. 1-4, pp. 73-101. https://doi.org/10.1016/j.palaeo.2004.02.019
6. Mahnach N. A., Zernickaya V. P., Kolosov I. L. Stable isotopes of carbon and oxygen and spore-pollen spectra in the Late Glacial-Holocene carbonate sediments of the Lake Sergeevskoe (Belarus). Litasfera [Lithosphere], 2009, no. 1(30), pp. 103-114 (in Russian).
7. Zernitskaya V., Stancikaite M., Vlasov B., Seiriene V., Kisieliene D., Gryguc G., Skipityte R. Vegetation pattern and sedimentation changes in the context of the Lateglacial climatic events: Case study of Staroje Lake (Eastern Belarus). Quaternary International, 2015, vol. 386, pp. 70-82. https://doi.org/10.1016/j.quaint.2014.06.045
8. Matveev A. V., Gurskij B. N., Levickaya R. I. Relief of Byelorussia. Minsk, 1988. 318 s. (in Russian).
9. Reimer P. J., Bard E., Bayliss A., Beck J. W., Blackwell P. G., Ramsey C. B., Buck C. E., Cheng H., Edwards R. L., Friedrich M., Grootes P. M., Guilderson T. P., Haflidason H., Hajdas I., Hatte C., Heaton T. J., Hoffmann D. L., Hogg A. G., Hughen K. A., Kaiser K. F., Kromer B., Manning S. W., Niu M., Reimer R. W., Richards D. A., Scott E. M., Southon J. R., Staff R. A., Turney C. S. M., Plicht J. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon, 2013, vol. 55, no. 4, pp. 1869-1887. https://doi.org/10.2458/azu_js_rc.55.16947
10. Grichuk V. P., Zaklinskaya E. D. Analysis of the fossil pollen and spores and its use in paleogeography. Moscow, 1948. 223 p. (in Russian).
11. Grimm E. C. Tilia Version 1.0.1. Springfield, 2007.
12. Stockmarr J. Tablets with Spores used in Absolute Pollen Analysis. Pollen et Spores, 1971, vol. 13, pp. 615-621.
13. Behre K. E. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores, 1981, vol. 23, pp. 225-245.
14. Higuera P. E., Gavin D. G., Bartlein P. J., Hallett D. J. Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire, 2010, vol. 19, no. 8, pp. 996-1014. https://doi.org/10.1071/wf09134
15. Mangerud J., Andersen S. T., Berglund B. E., Donner J. J. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas, 1974, no. 3, pp. 109-128. https://doi.org/10.1111/j.1502-3885.1974.tb00669.x