SINGLE-PARTICLE AND COLLECTIVE MODES IN MAGNETIC SEPARATION OF RED BLOOD CELLS
Abstract
An experimental microfluidic model is proposed for studying magnetophoretic separation of submagnetic microparticles from liquid that ensures simple deterministic experimental conditions, the possibility of measuring the relevant physical properties of microparticles, their spatio-temporal distribution in diluted samples, and the process visualization in concentrated samples. Magnetic separation of red blood cells from deoxygenated diluted blood is studied. A phenomenon is discovered of the magnetophoretic granular Rayleigh–Taylor type instability that destroys the single-particle separation mode at cell volume concentration of about 0.002. The cell concentration growth is accompanied by enhancing the suspension vortex motion, but however this does not influence the time and the purity of the magnetic separation of red blood cells. From our observations, we have come to the conclusion that the hydrodynamic magnetophoretic instability should be related with mesoscopic swirls caused by the cell concentration dispersion. The concept of the magneto-gravitational analogy is formulated allowing one to consider the collective magnetophoresis of submagnetic microparticles as sedimentation in predetermined force fields. Our experimental model and the results obtained are of interest for the emerging technology of microfluidic analytical systems and for mechanics of suspensions as a whole.
About the Authors
B. E. KASHEVSKYBelarus
A. M. ZHOLUD
Belarus
S. B. KASHEVSKY
Belarus
References
1. Melville D. et al // Nature. 1975. Vol. 255. P. 706.
2. Owen C. S. // Biophys. J. 1978. Vol. 22. P. 171.
3. Paul F. et al. // Lancet. 1981. Vol. 2. P. 70.
4. Furlani E. P. // J. Phys. D: Appl. Phys. 2007. Vol. 40. P. 1313.
5. Jung J., Han K. // Appl. Phys. Lett. 2008. Vol. 93. Art. N 223902.
6. Gossett D. R. et al. // Analyt. Bioanalyt. Chemistry. 2010. Vol. 379. P. 3249.
7. Jung Y. et al. // Biomedical Microdevices. 2010. Vol. 12. P. 637.
8. Moore L. R. et al. // IEEE Trans. on Magnetics. 2013. Vol. 49. P. 309.
9. Nam J. et al. // Anal. Chem. 2013. Vol. 85. P. 7316.
10. Batchelor G. K. // J. Fluid. Mech. 1072. Vol. 56. P. 375.
11. Ramaswamy S. // Advances in Physics. 2001. Vol. 50. P. 297.
12. Guazzelli É., Hinch J. // Annual Review of Fluid Mechanics. 2011. Vol. 43. P. 97.
13. Tee S.-Y. et al. // Phys. Rev. Lett. 2002. Vol. 89. Art. N 054501.
14. Desreumaux N. et al. // Phys. Rev. Lett. 2013. Vol. 111. Art. N 118301.
15. Kashevsky B. E., Zholud A. M., Kashevsky S. B. // Rev. Sci. Instrum. 2012. Vol. 83. Art. N 075104.
16. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М., 1982.
17. Bensimon D. et al. // Rev. Modern Phys. 1986. Vol. 58. P. 977.
18. Richardson J. F., Zaki W. N. // Trans. Inst. Chem. Eng. 1954. Vol. 32. P. 35.
19. Cell Separation Methods and Selected Applications / eds. by T. G. Pretlow, T. Pretlow. San Diego: Acad. Press, 1983.
20. P. 33.20. Кашевский Б. Э. и др. // Докл. НАН Беларуси. 2015. Т. 59, № 1. С. 58–62.