Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

SCREENING OF THROMBOXANE SYNTHASE PEPTIDOMIMETICS BY PEPTIDE PHAGE DISPLAY

Abstract

In order to identify potential inhibitors and modulators of thromboxane synthase, its molecular cloning, heterologous expression, isolation, and purification have been carried out. The recombinant protein is isolated in the homogenous state and possesses the functional activity. Peptide with an amino acids sequence SGVYKVLYDWQHGGF is identified using the random dodecapeptides phage library. It is revealed that this peptide has a great similarity to thrombopoietin peptidomimetic. This allows one to suppose the role of this hormone in the thromboxane synthase regulation.

About the Authors

D. O. DORMESHKIN
Институт биоорганической химии НАН Беларуси, Минск
Belarus


A. V. SVIRID
Институт биоорганической химии НАН Беларуси, Минск
Belarus


A. A. GILEP
Институт биоорганической химии НАН Беларуси, Минск
Belarus


S. A. USANOV
Институт биоорганической химии НАН Беларуси, Минск
Belarus


References

1. Dogne J. M., Hanson J., de Leval X. et al. // Current Pharmaceutical Design. 2006. N 12. P. 903−923.

2. Nakahata N. // Pharmacological Therapy. 2008. N 118. P. 18−35.

3. Yuhki K., Kojima F., Kashiwagi H. et al. // Pharmacological Therapy. 2011. N 129. P. 195−205.

4. Nelson D. R., Kamataki T., Waxman D. J. et al. // DNA and Cell Biology. 1993. N 12. P. 1−51.

5. Ullrich V., Nusing R. // Stroke. 1990. N 21. P. 134−138.

6. Haurand M., Ullrich V. // J. of Biological Chemistry. 1985. N 260. P. 15059−15067.

7. Uchida K. // Trends in Cardiovascular Medicine. 1999. N 9. P. 109−113.

8. Chaudhary A. K., Nokubo M., Reddy G. R. et al. // Science. 1994. N 265. P. 1580−1582.

9. Otteneder M. B., Knutson C. G., Daniels J. S. et al. // Proceedings of the National Academy of Sciences USA. 2006. N 103. P. 6665−6669.

10. Jones D. A., Fitzpatrick F. A. // J. of Biological Chemistry. 1991. N 34. P. 23510−23514.

11. Wang L. H., Tazawa R., Lang A. Q., Wu K. K. // Archives of Biochemistry and Biophysics. 1994. N 315. P. 273−278.

12. Xia Z., Shen R. F., Baek S. J., Tai H. H. // Biochemical J. 1993. N 295. P. 457−461.

13. Bradbury A. R. et al. // Nature Biotechnology. 2011. N 29. P. 245−254.

14. Carmen S., Jermutus L. // Briefings in Functional Genomics and Proteomics. 2002. N 1. P. 189–203.

15. Yang C., Yang S., Qu S. // J. of Tongji Medical University. 2001. N 21. P. 134–137.

16. Luck K., Trave G. // Bioinformatics. 2011. N 27. P. 899–902.

17. Hsu P. Y. et al. // J. of Biological Chemistry. 1999. N 274. P. 762–769.

18. Ph. D. Phage Display Libraries. Instructional manual. New England BioLabs Inc. – 44 p.

19. Hecker M., Haurand M., Ullrich V. et al. // Archives of Biochemistry and Biophysics. 1987. N 254. P. 124−135.

20. Ortiz de Montellano P. R., De Voss J. J. Cytochrome P450: Structure, Mechanism, and Biochemistry. 3rd ed. New York: Kluwer, 2005.

21. Huang J. et al. // J. of Biomedicine and Biotechnology. 2010. P. 101932.

22. Cwirla S. E. et al. // Science. 1997. N 276. P. 1696–1699.

23. Kaushansky K. // New England J. of Medicine. 2006. N 354. P. 2034−2045.


Review

Views: 968


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)