Взаимодействие активных форм кислорода с галлоцианином при активации нейтрофилов
https://doi.org/10.29235/1561-8323-2019-63-6-730-735
Анатацыя
В работе изучены химические изменения красителя галлоцианина при его взаимодействии c активными формами кислорода (•О2ˉ, H2O2) и хлорноватистой кислотой (HOCl). Показано, что данный краситель в растворе претерпевает химические превращения как при действии активных форм кислорода, так и галогенов. Согласно полученным данным, в суспензии активированных нейтрофилов основной вклад в превращение красителя вносит •О2ˉ. Следовательно, галлоцианин может быть применен для оценки функциональной активности нейтрофилов, а именно НАДФН-оксидазного комплекса, а также при разработке терапевтических методов лечения с применением антиоксидантов при заболеваниях, ассоциированных с развитием окислительного стресса.
Аб аўтарах
В. ЛуценкоРасія
Д. Григорьева
Расія
И. Горудко
Беларусь
А. Соколов
Расія
О. Панасенко
Расія
С. Черенкевич
Расія
Спіс літаратуры
1. Reactive oxygen species: from health to disease / k. Brieger [et al.] // Swiss Medical Weekly. – 2012. – Vol. 142. – P. 1–14. https://doi.org/10.4414/smw.2012.13659
2. Phaniendra, A. Free radicals: properties, sources, targets, and their implication in various diseases / A. Phaniendra, D. B. Jestadi, L. Periyasamy // Indian Journal of Clinical Biochemistry. – 2015. – Vol. 30, N 1. – P. 11–26. https://doi. org/10.1007/s12291-014-0446-0
3. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems / J. Huang [et al.] // Journal of Leukocyte Biology. – 2016. – Vol. 99, N 4. – P. 541–548. https://doi.org/10.1189/jlb.3ru0615-256r
4. Tarpey, M. M. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite / M. M. Tarpey, I. Fridovich // Circulation Research. – 2001. – Vol. 89, N 3. – P. 224–236. https://doi.org/10.1161/ hh1501.094365
5. Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein / J. Flemmig [et al.] // Free Radical Research. – 2015. – Vol. 49, N 6. – P. 768–776. https://doi.org/10.3109/10715762.2014.999676
6. kinetic method for assaying the halogenating activity of myeloperoxidase based on reaction of celestine blue B with taurine halogenamines / A. V. Sokolov [et al.] // Free Radical Research. – 2015. – Vol. 49, N 6. – P. 777–789. https://doi.org/10. 3109/10715762.2015.1017478
7. Timoshenko, A. V. Lectin-triggered superoxide/H2O2 and granule enzyme release from cells / A. V. Timoshenko, K. Kayser, H. J. Gabius // Lectin Methods and Protocols. – Humana Press, 1998. – P. 441–451. https://doi.org/10.1385/089603-396-1:441
8. Borges, F. Progress towards the discovery of xanthine oxidase inhibitors / F. Borges, E. Fernandes, F. Roleira // Current Medicinal Chemistry. – 2002. – Vol. 9, N 2. – P. 195–217. https://doi.org/10.2174/0929867023371229
9. Myeloperoxidase: a target for new drug development? / Е. Malle [et al.] // British Journal of Pharmacology. – 2007. – Vol. 152, N 6. – P. 838–854. https://doi.org/10.1038/sj.bjp.0707358
10. Capacity of ceruloplasmin to scavenge products of the respiratory burst of neutrophils is not altered by the products of reactions catalyzed by myeloperoxidase / A. V. Sokolov [et al.] // Biochemistry and Cell Biology. – 2018. – Vol. 96, N 4. – P. 457–467. https://doi.org/10.1139/bcb-2017-0277
11. Winterbourn, C. C. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide / C. C. Winterbourn, D. Metodiewa // Free Radical Biology and Medicine. – 1999. – Vol. 27, N 3–4. – P. 322–328. https://doi. org/10.1016/s0891-5849(99)00051-9