Preview

Доклады Национальной академии наук Беларуси

Пашыраны пошук

Оценки снизу для количества векторов с алгебраическими координатами вблизи гладких поверхностей

https://doi.org/10.29235/1561-8323-2020-64-1-7-12

Анатацыя

Аннотация. Пусть z = f(x, y) - некоторая поверхность в трехмерном евклидовом пространстве. Рассмотрим некоторый слой V, точки которого удовлетворяют неравенству |f(x, y) - z| < Q ~Y, где 0 < у < 1 и Q  - достаточно большое натуральное число. В работах Хаксли, Бересневича, Велани было изучено распределение рациональных точек в V. В данной работе изучается распределение точек с алгебраическими сопряженными действительными координатами ᾱ=α1 α2 α3 в V. При некотором c1 = c1(n) получена оценка снизу вида c2 Q n+1-Y для количества алгебраических чисел степени n ≥ 3 и высоты не более c3 Q.

Праглядаў: 1085


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)