Импульсная лазерная обработка поверхности композитного материала в процессах формирования широкополосных антиотражающих покрытий
https://doi.org/10.29235/1561-8323-2020-64-1-21-27
Анатацыя
Впервые методом импульсной лазерной обработки композитных материалов на основе эпоксидного полимера ЭД-20 с многостенными углеродными нанотрубками сформированы образцы антиотражающих в видимом и ближнем ИК диапазонах длин волн покрытий. Проведены оптические исследования по измерению коэффициента отражения в диапазоне от 400 до 2500 нм. Установлено влияние поверхностной структуры материалов на коэффициент отражения. Продемонстрирована возможность создания «безотражательных» поверхностей образцов композитов в видимом и ближнем ИК диапазонах спектра.
Аб аўтарах
И. ПарфимовичБеларусь
Ф. Комаров
Беларусь
О. Мильчанин
Беларусь
А. Ткачев
Расія
О. Людчик
Беларусь
М. Кольчевская
Беларусь
Р. Миранович
Беларусь
Спіс літаратуры
1. Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials / J. Zhu [et al.] // J. Porous Mater. - 2016. - Vol. 23, N 5. - P. 1217-1225. https://doi.org/10.1007/s10934-016-0180-5
2. Moth-eye antireflection nanostructure on glass for CubeSat / Y. Liu [et al.] // J. Vacuum Science & Technology B. -2018. - Vol. 36, N 6. - P. 06JG01. https://doi.org/10.1116/1.5050986
3. Lin, Y. Recent progress in antireflection and self-cleaning technology - From surface engineering to functional surfaces / Y. Lin, J. He // Progress in Materials Science. - 2014. - Vol. 61. - P. 94-143. https://doi.org/10.1016/j.pmatsci.2013.12.003
4. Fabrication of hard-coated optical absorbers with microstructured surfaces using etched ion tracks: Toward broadband ultra-low reflectance / K. Amemiya [et al.] // Nuclear Instruments and Methods in Physics Research B. - 2015. - Vol. 356357. - P. 154-159. https://doi.org/10.1016/j.nimb.2015.05.002
5. Nanoscale of biomimetic moth-eye structures exhibiting inverse polarization phenomena at the Brewster angle /S. Chuang [et al.] // Nanoscale. - 2010. - Vol. 2, N 5. - P. 799-805. https://doi.org/10.1039/c0nr00010h
6. An ultra-black silicon absorber / M. Steglich [et al.] // Laser Photonics Rev. - 2014. - Vol. 8, N 2. - P. L13-L17. https://doi.org/10.1002/lpor.201300142
7. Bendable, ultra-black absorber based on a graphite nanocone nanowire composite structure / Y. Sun [et al.] // Optics Express. - 2015. - Vol. 23, N 15. - P. 20115-20123. https://doi.org/10.1364/oe.23.020115
8. Black Silicon Photovoltaics / M. Otto [et al.] // Adv. Optical. Mater. - 2015. - Vol. 3, N 2. - P. 147-164. https://doi.org/10.1002/adom.201400395
9. Transfer properties of moth-eye structure film by RTR UV-NIL / T. Uchida [et al.] // International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), 14-17 April 2015. - Kyoto, Japan, 2015. https://doi.org/10.1109/icep-iaac.2015.7111049
10. Super Black Material from Low-Density Carbon Aerogels with Subwavelength Structures / W. Sun [et al.] // ACS Nano. - 2016. - Vol. 10, N 10. - P. 9123-9128. https://doi.org/10.1021/acsnano.6b02039
11. Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5-50 mkm wavelength region / C. J. Chunnilall [et al.] // Carbon. - 2012. - Vol. 50, N 14. - P. 5348-5350. https://doi.org/10.1016/j.carbon.2012.07.014
12. A black body absorber from vertically aligned single-walled carbon nanotubes / K. Mizuno [et al.] // PNAS. - 2009. -Vol. 106, N 15. - P. 6044-6047. https://doi.org/10.1073/pnas.0900155106
13. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials / F. De Nicola [et al.] // Physical Review B. - 2017. - Vol. 96, N 4. - 045409-1-6. https://doi.org/10.1103/physrevb.96.045409
14. A composite based on epoxy polymer and carbon nanotubes: structure, optical properties ant interaction with microwave radiation / F. F. Komarov [et al.] // Advanced Materials & Technologies. - 2017. - N 2. - P. 019-025. https://doi.org/10.17277/amt.2017.02.pp.019-025