Pulse laser treatment of a composite material surface in the processes of broadband antireflective coating formation
https://doi.org/10.29235/1561-8323-2020-64-1-21-27
Abstract
For the first time, a pulse laser treatment method was developed and demonstrated for the formation of antireflective coatings based on composite materials containing polymer with carbon nanotubes. The effect of the composite surface in the visual and near-IR regions modification by the pulse laser treatment on light reflectivity has been studied. The possibility of creating innovative non-reflective surfaces of composite samples in the visual and near-IR ranges is demonstrated.
Keywords
About the Authors
I. D. ParfimovichBelarus
Parfimovich Ivan D. - Junior researcher.
7, Kurchatov Str., 220045, Minsk
F. F. Komarov
Belarus
Komarov Fadey F. - Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory.
7, Kurchatov Str., 220045, Minsk
O. V. Milchanin
Belarus
Milchanin Oleg V. - Senior researcher.
7, Kurchatov Str., 220045, Minsk
A. G. Tkachev
Russian Federation
Tkachev Alexey G. - D. Sc. (Engineering), Professor, Head of the Department.
106, Sovetskaya Str., 392000, Tambov
O. R. Lyudchik
Belarus
Lyudchik Oleg R. - Ph. D. (Physics and Mathematics), Assistant professor.
4, Nezavisimosti Ave., 220030, Minsk
M. N. Kolchevskaya
Belarus
Kolchevskaya Maria N. - Student.
4, Nezavisimosti Ave., 220030, Minsk
R. B. Miranovich
Belarus
Miranovich Roman B. - Master student.
4, Nezavisimosti Ave., 220030, Minsk
References
1. Zhu J., Yang X., Fu Z., Wang C., Wu W., Zhang L. Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. Journal of Porous Materials, 2016, vol. 23, no. 5, pp. 1217-1225. https://doi.org/10.1007/s10934-016-0180-5
2. Liu Y., Soltani M., Dey R. K., Cui B., Lee R., Podmore H. Moth-eye antireflection nanostructure on glass for CubeSat. Journal of Vacuum Science & Technology B, 2018, vol. 36, no. 6, pp. 06JG01. https://doi.org/10.1116/1.5050986
3. Yao L., He J. Recent progress in antireflection and self-cleaning technology - From surface engineering to functional surfaces. Progress in Materials Science, 2014, vol. 61, pp. 94-143. https://doi.org/10.1016/j.pmatsci.2013.12.003
4. Amemiya K., Koshikawa H., Yamaki T., Maekawa Y., Shitomi H., Numata T., Kinoshita K., Tanabe M., Fukuda D. Fabrication of hard-coated optical absorbers with microstructured surfaces using etched ion tracks: Toward broadband ultra-low reflectance. Nuclear Instruments and Methods in Physics Research B, 2015, vol. 356-357, pp. 154-159. https://doi.org/10.1016/j.nimb.2015.05.002
5. Chuang S., Chen H., Shieh J., Lin C., Cheng C., Liu H., Yu C. Nanoscale of biomimetic moth-eye structures exhibiting inverse polarization phenomena at the Brewster angle. Nanoscale, 2010, vol. 2, no. 5, pp. 799-805. https://doi.org/10.1039/c0nr00010h
6. Steglich M., Lehr D., Ratzsch S., Kasebier T., Schrempel F., Kley E., Tunnermann A. An ultra-black silicon absorber. Laser & Photonics Reviews, 2014, vol. 8, no. 2, pp. L13-L17. https://doi.org/10.1002/lpor.201300142
7. Sun Y., Evans J., Ding F., Liu N., Liu W., Zhang Y., He S. Bendable, ultra-black absorber based on a graphite nanocone nanowire composite structure. Optics Express, 2015, vol. 23, no. 15, pp. 20115-20123. https://doi.org/10.1364/oe.23.020115
8. Otto M., Algasinger M., Branz H., Gesemann B., Gimpel T., Fuchsel K., Kasebier T., Kontermann S., Koynov S., Li X., Naumann V., Oh J., Sprafke A., Ziegler J., Zilk M., Wehrspohn R. Black Silicon Photovoltaics. Advanced Optical Materials, 2015, vol. 3, no. 2, pp. 147-164. https://doi.org/10.1002/adom.201400395
9. Uchida T., Moro M., Hiwasa S., Taniguchi J. Transfer properties of motheye structure film by RTR UV-NIL. International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), 14-17 April 2015. Kyoto, Japan, 2015. https://doi.org/10.1109/icep-iaac.2015.7111049
10. Sun W., Du A., Feng Y., Shen J., Huang S., Tang J., Zhou B. Super Black Material from Low-Density Carbon Aerogels with Subwavelength Structures. ACS Nano, 2016, vol. 10, no. 10, pp. 9123-9128. https://doi.org/10.1021/acsnano.6b02039
11. Chunnilall C. J., Lehman J. H., Theocharous E., Sanders A. Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5-50 mkm wavelength region. Carbon, 2012, vol. 50, no. 14, pp. 5348-5350. https://doi.org/10.1016/).carbon.2012.07.014
12. Mizuno K., Ishii J., Kishida H., Hayamizu Y., Yasuda S., Futaba D. N., Yumura M., Hata K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proceedings of the National Academy of Sciences, 2009, vol. 106, no. 15, pp. 6044-6047. https://doi.org/10.1073/pnas.0900155106
13. De Nicola F., Hines P., De Crescenzi M., Motta N. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials. Physical Review B, 2017, vol. 96, no. 4, art. 045409-1-6. https://doi.org/10.1103/physrevb.96.045409
14. Komarov F. F., Tkachev A. G., Milchanin O. V., Parfimovich I. D., Grinchenko M. V., Parkhomenko I. N., Byche-nok D. S. A composite based on epoxy polymer and carbon nanotubes: structure, optical properties ant interaction with microwave radiation. Advanced Materials & Technologies, 2017, no. 2, pp. 019-025. https://doi.org/10.17277/amt.2017.02.pp.019-025