Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Pulse laser treatment of a composite material surface in the processes of broadband antireflective coating formation

https://doi.org/10.29235/1561-8323-2020-64-1-21-27

Abstract

For the first time, a pulse laser treatment method was developed and demonstrated for the formation of antireflective coatings based on composite materials containing polymer with carbon nanotubes. The effect of the composite surface in the visual and near-IR regions modification by the pulse laser treatment on light reflectivity has been studied. The possibility of creating innovative non-reflective surfaces of composite samples in the visual and near-IR ranges is demonstrated.

About the Authors

I. D. Parfimovich
A N. Sevchenko Institute of Applied Physical Problems, Belarusian State University
Belarus

Parfimovich Ivan D. - Junior researcher.

7, Kurchatov Str., 220045, Minsk



F. F. Komarov
A N. Sevchenko Institute of Applied Physical Problems, Belarusian State University
Belarus

Komarov Fadey F. - Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory.

7, Kurchatov Str., 220045, Minsk



O. V. Milchanin
A N. Sevchenko Institute of Applied Physical Problems, Belarusian State University
Belarus

Milchanin Oleg V. - Senior researcher.

7, Kurchatov Str., 220045, Minsk



A. G. Tkachev
Tambov State Technical University
Russian Federation

Tkachev Alexey G. - D. Sc. (Engineering), Professor, Head of the Department.

106, Sovetskaya Str., 392000, Tambov



O. R. Lyudchik
Belarusian State University
Belarus

Lyudchik Oleg R. - Ph. D. (Physics and Mathematics), Assistant professor.

4, Nezavisimosti Ave., 220030, Minsk



M. N. Kolchevskaya
Belarusian State University
Belarus

Kolchevskaya Maria N. - Student.

4, Nezavisimosti Ave., 220030, Minsk



R. B. Miranovich
Belarusian State University
Belarus

Miranovich Roman B. - Master student.

4, Nezavisimosti Ave., 220030, Minsk 



References

1. Zhu J., Yang X., Fu Z., Wang C., Wu W., Zhang L. Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. Journal of Porous Materials, 2016, vol. 23, no. 5, pp. 1217-1225. https://doi.org/10.1007/s10934-016-0180-5

2. Liu Y., Soltani M., Dey R. K., Cui B., Lee R., Podmore H. Moth-eye antireflection nanostructure on glass for CubeSat. Journal of Vacuum Science & Technology B, 2018, vol. 36, no. 6, pp. 06JG01. https://doi.org/10.1116/1.5050986

3. Yao L., He J. Recent progress in antireflection and self-cleaning technology - From surface engineering to functional surfaces. Progress in Materials Science, 2014, vol. 61, pp. 94-143. https://doi.org/10.1016/j.pmatsci.2013.12.003

4. Amemiya K., Koshikawa H., Yamaki T., Maekawa Y., Shitomi H., Numata T., Kinoshita K., Tanabe M., Fukuda D. Fabrication of hard-coated optical absorbers with microstructured surfaces using etched ion tracks: Toward broadband ultra-low reflectance. Nuclear Instruments and Methods in Physics Research B, 2015, vol. 356-357, pp. 154-159. https://doi.org/10.1016/j.nimb.2015.05.002

5. Chuang S., Chen H., Shieh J., Lin C., Cheng C., Liu H., Yu C. Nanoscale of biomimetic moth-eye structures exhibiting inverse polarization phenomena at the Brewster angle. Nanoscale, 2010, vol. 2, no. 5, pp. 799-805. https://doi.org/10.1039/c0nr00010h

6. Steglich M., Lehr D., Ratzsch S., Kasebier T., Schrempel F., Kley E., Tunnermann A. An ultra-black silicon absorber. Laser & Photonics Reviews, 2014, vol. 8, no. 2, pp. L13-L17. https://doi.org/10.1002/lpor.201300142

7. Sun Y., Evans J., Ding F., Liu N., Liu W., Zhang Y., He S. Bendable, ultra-black absorber based on a graphite nanocone nanowire composite structure. Optics Express, 2015, vol. 23, no. 15, pp. 20115-20123. https://doi.org/10.1364/oe.23.020115

8. Otto M., Algasinger M., Branz H., Gesemann B., Gimpel T., Fuchsel K., Kasebier T., Kontermann S., Koynov S., Li X., Naumann V., Oh J., Sprafke A., Ziegler J., Zilk M., Wehrspohn R. Black Silicon Photovoltaics. Advanced Optical Materials, 2015, vol. 3, no. 2, pp. 147-164. https://doi.org/10.1002/adom.201400395

9. Uchida T., Moro M., Hiwasa S., Taniguchi J. Transfer properties of motheye structure film by RTR UV-NIL. International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), 14-17 April 2015. Kyoto, Japan, 2015. https://doi.org/10.1109/icep-iaac.2015.7111049

10. Sun W., Du A., Feng Y., Shen J., Huang S., Tang J., Zhou B. Super Black Material from Low-Density Carbon Aerogels with Subwavelength Structures. ACS Nano, 2016, vol. 10, no. 10, pp. 9123-9128. https://doi.org/10.1021/acsnano.6b02039

11. Chunnilall C. J., Lehman J. H., Theocharous E., Sanders A. Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5-50 mkm wavelength region. Carbon, 2012, vol. 50, no. 14, pp. 5348-5350. https://doi.org/10.1016/).carbon.2012.07.014

12. Mizuno K., Ishii J., Kishida H., Hayamizu Y., Yasuda S., Futaba D. N., Yumura M., Hata K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proceedings of the National Academy of Sciences, 2009, vol. 106, no. 15, pp. 6044-6047. https://doi.org/10.1073/pnas.0900155106

13. De Nicola F., Hines P., De Crescenzi M., Motta N. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials. Physical Review B, 2017, vol. 96, no. 4, art. 045409-1-6. https://doi.org/10.1103/physrevb.96.045409

14. Komarov F. F., Tkachev A. G., Milchanin O. V., Parfimovich I. D., Grinchenko M. V., Parkhomenko I. N., Byche-nok D. S. A composite based on epoxy polymer and carbon nanotubes: structure, optical properties ant interaction with microwave radiation. Advanced Materials & Technologies, 2017, no. 2, pp. 019-025. https://doi.org/10.17277/amt.2017.02.pp.019-025


Review

Views: 1038


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)