Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Comparative analysis of the methods of producing lithium titanates

https://doi.org/10.29235/1561-8323-2020-64-1-42-49

Abstract

Anodic materials with spinel structure Li2MTi3O8 (M - divalent metal) are promising for storing electricity from renewable energy sources, for portable electronics and electric vehicles. In this work, mesoporous lithium titanates Li2MTi3O8 (M - Co, Cu, Zn) powders with spinel structure were prepared by the method of self-propagating high-temperature synthesis (SHS) from the glycine-citrate-nitrate mixtures and, for comparison, by the sol-gel method. Their crystal structure, phase composition, thermal stability, microstructure and dispersion were studied. It was established that the SHS method of preparation of lithium titanates has several advantages over the sol-gel method because there is no need to use any solvents; it is possible to reduce particle aggregation, to increase specific surface and to reduce bulk density of the obtained powders.

About the Authors

I. V. Matsukevich
Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Matsukevich Irina V. - Ph. D. (Chemistry), Head of the Laboratory.

9/1, Surganov Str., 220072, Minsk



A. I. Kulak
Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Kulak Anatoly I. - Correspondent Member, D. Sc. (Chemistry), Professor, Director.

9/1, Surganov Str., 220072, Minsk



O. V. Polhovskaya
Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Polhovskya Olga V. - Junior researcher.

9/1, Surganov Str., 220072, Minsk



D. A. Kiiliomin
Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
Belarus

Kuliomin Denis A. - Junior researcher.

9/1, Surganov Str., 220072, Minsk



References

1. Wang L., Wu L., Li Z., Lei G., Xiao Q., Zhang P. Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anode material for lithium-ion batteries. Electrochimica Acta, 2011, vol. 56, no. 15, pp. 5343-5346. https://doi.org/10.1016/).electacta.2011.03.122

2. Wang J., Zhao H., Shen Y., Du Zh., Chen X., Xia Q. Structure, Stoichiometry, and Electrochemical Performance of Li2CoTi3O8 as an Anode Material for Lithium-Ion Batteries. ChemPlusChem, 2013, vol. 78, no. 12, pp. 1530-1535. https://doi.org/10.1002/cplu.201300235

3. Tang H., Tang Z. Effect of different carbon sources on electrochemical properties of Li2ZnTi3O8/C anode material in lithium-ion batteries. Journal of Alloys and Compounds, 2014, vol. 613, pp. 267-274. https://doi.org/10.1016/jjall-com.2014.06.050

4. Nikiforova P. A., Stenina I. A., Kulova T. L., Skundin A. M., Yaroslavtsev A. B. Effect of Particle Size on the Conductive and Electrochemical Properties of Li2ZnTi3O8. Inorganic Materials, 2016, vol. 52, no. 11, pp. 1137-1142. https://doi.org/10.1134/s002016851611011x

5. Inamdar A. I., Ahmed A. T. A., Chavan H. S., Jo Y., Cho S., Kim J., Pawar S. M., Hou B., Cha S. N., Kim H., Im H. Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery. Ceramics International, 2018, vol. 44, no. 15, pp. 18625-18632. https://doi.org/10.1016/j.ceramint.2018.07.087

6. Sumesh G., Mailadil T. S. Microware dielectric properties of novel temperature stable high Q Li2Mg1-IZnITi3O8 and Li2A1-ICaITi3O8 (A = Mg, Zn) ceramics. Journal of the European Ceramic Society, 2010, vol. 30, no. 12, pp. 2585-2592. https://doi.org/10.1016/jjeurceramsoc.2010.05.010

7. Fang L., Chu D., Zhou H., Chen X., Yang Z. Microwave dielectric properties and low temperature sintering behavior of Li2CoTi3O8 ceramic. Journal of Alloys and Compounds, 2011, vol. 509, no. 5, pp. 1880-1884. https://doi.org/10.1016/jjall-com.2010.10.078

8. Lu X., Zheng Y., Huang Q., Dong Z. Structural Dependence of Microwave Dielectric Properties of Spinel-Structured Li2ZnTi3O8 Ceramic: Crystal Structure Refinement and Raman Spectroscopy Study. Journal of Electronic Materials, 2016, vol. 45, no. 2, pp. 940-946. https://doi.org/10.1007/s11664-015-4232-4

9. Bari M., Taheri-Nassaj E., Taghipour-Armaki H. Phase Evolution, Microstructure, and Microwave Dielectric Properties of Reaction-Sintered Li2ZnTi3O8 Ceramic Obtained Using Nanosized TiO2 Reagent. Journal of Electronic Materials, 2015, vol. 44, no. 10, pp. 3670-3676. https://doi.org/10.1007/s11664-015-3885-3

10. Reeves N., Pasero D., West A. R. Order-disorder transition in the complex lithium spinel Li2CoTi3O8. Journal of Solid State Chemistry, 2007, vol. 180, no. 6, pp. 1894-1901. https://doi.org/10.1016/jjssc.2007.04.015

11. Fang L., Liu Q., Tang Y., Zhang H. Adjustable dielectric properties of Li2CuIZn1.ITi3O8 (х = 0 to 1) ceramics with low sintering temperature. Ceramics International, 2012, vol. 38, no. 8, рр. 6431-6434. https://doi.org/10.1016/j.cera-mint.2012.05.018

12. Xu Y., Hong Zh., Xia L., Yang J., Wei M. One step sol-gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties. Electrochimica Acta, 2013, vol. 88, pp. 74-78. https://doi.org/10.1016/j.electacta.2012.10.044

13. Stenina I. A., Nikiforova P. A., Kulova T. L., Skundin A. M., Yaroslavcev A. B. Electrochemical properties of nanomaterials Li2ZnTi3O8/C. Rossijskie nanotekhnologii = Russian nanotechnology, 2017, vol. 12, no. 11-12, pp. 30-37 (in Russian).

14. Camara M. S. C., Lisboa-Filho P. N., Cabrelon M. D., Gama L., Ortiz W. A., Paiva-Santos C. O., Leite E. R., Longo E. Synthesis and characterization of Li2ZnTi3O8 spinel using the modified polymeric precursor method. Materials Chemistry and Physics, 2003, vol. 82, no. 1, pp. 68-72. https://doi.org/10.1016/s0254-0584(03)00144-5

15. Camara M. S. C., Gurgel M. F. C., Lazaro S. R., Boschi T. M., Pizani P. S., Leite E. R., Beltran A., Longo E. Room Temperature Photoluminescence of the Li2ZnTi3O8 Spinel: Experimental and Theoretical Study. International Journal of Quantum Chemistry, 2005, vol. 103, no. 5, pp. 580-587. https://doi.org/10.1002/qua.20549

16. Wang L., Meng Zh., Wang H., Li X., Zang G. Effects of TiO2 starting materials on the synthesis of Li2ZnTi3O8 for lithium ion battery anode. Ceramics International, 2016, vol. 42, no. 15, pp. 16872-16881. https://doi.org/10.1016/j.ceramint.2016.07.184

17. Li Y., Du Ch., Liu J., Zhang F., Xu Q., Qu D., Zhang X., Tang Zh. Synthesis and characterization of Li2Zn0 6Cu0 4Ti3O8 anode material via a sol-gel method. Electrochimica Acta, 2015, vol. 167, pp. 201-206. https://doi.org/10.1016/j.electac-ta.2015.03.138

18. Liu T., Tang H., Zan L., Tang Zh. Comparative study of Li2ZnTi3O8 anode material with good high rate capacities prepared by solid state, molten salt and sol-gel methods. Journal of Electroanalytical Chemistry, 2016, vol. 771, pp. 10-16. https://doi.org/10.1016/jjelechem.2016.03.036

19. Chen W., Du R., Ren W., Liang H., Xu B., Shu J., Wang Zh. Solid state synthesis of Li2Co0 5Cu0 5Ti3O8 and Li2CoTi3O8 and their comparative lithium storage properties. Ceramics International, 2014, vol. 40, no. 8, рр. 13757-13761. https://doi.org/10.1016/j.ceramint.2014.05.083


Review

Views: 809


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)