Differential gene expression in Fusarium-treated seedlings of narrow-leaved and yellow lupine
https://doi.org/10.29235/1561-8323-2020-64-1-63-70
Abstract
In order to assess the differential expression of genes, seedlings of narrow-leaved and yellow lupine treated with different Fusarium isolates were studied by the method of SRAP-analysis. As a result, PCR fragments correlated with tolerance to infection were found. The corresponding genetic determinants are likely involved in the resistance (tolerance) control of lupine plants to Fusarium.
About the Authors
E. N. SysoliatinBelarus
Sysoliatin Eugeny N. - Junior researcher.
27, Akademicheskaya Str., 220072, Minsk
V. S. Anokhina
Belarus
Anokhina Vera S. - Ph. D. (Biology), Assistant professor.
4, Nezavisimosti Ave., 220030, Minsk
N. V. Anisimova
Belarus
Anisimova Natalia V. - Ph. D. (Biology), Senior researcher.
27, Akademicheskaya Str., 220072, Minsk
O. G. Babak
Belarus
Babak Olga G. - Ph. D. (Biology), Assistant professor, Leading researcher.
27, Akademich-eskaya Str., 220072, MinskA. V. Kilchevsky
Belarus
Kilchevsky Alexander V. - Academician, D. Sc. (Biology), Professor, Scientific leader of the Laboratory.
27, Akademicheskaya Str., 220072, Minsk
References
1. Zian A. H., El-Demardash I. S., El-Mouhamady A. A., El-Barougy E. Studies the resistance of lupine for Fusarium oxysporum f. sp. lupini through molecular genetic technique. WorldApplied Sciences Journal, 2013, vol. 26, no. 8, pp. 1064-1069.
2. Hwang S. F., Chang K. F., Strelkov S. E., Gossen B. D., Howard R. J. The impact of Fusarium avenaceum on lupin production on the Canadian prairies. Canadian Journal of Plant Pathology, 2014, vol. 36, no. 3, pp. 291-299. https://doi.org/10.1080/07060661.2014.925507
3. Lindbeck K. (ed.) Industry biosecurity plan for the grains industry. Threat Specific Contingency Plan. Fusarium wilt (of chickpea, lentil & lupin) Fusarium oxysporum f. sp. ciceris, F. oxysporum f. sp. lentis, F. oxysporum f. sp. lupini. Australia, 2009. 38 p.
4. Holtz M. D., Chang K.-F., Hwang S. F., Gossen B. D., Strelkov S. E. Characterization of Fusarium spp. associated with lupin in central Alberta, Canada. Canadian Journal of Plant Pathology, 2013, vol. 35, no. 1, pp. 56-67. https://doi.org/10.1080/ 07060661.2012.729538
5. Jenkinson P., Parry D. W. Splash dispersal of conidia of Fusarium culmorum and Fusarium avenaceum. Mycological Research, 1994, vol. 98, no. 5, pp. 506-510. https://doi.org/10.1016/s0953-7562(09)80468-1
6. Nowicki B. Patogenic fungi associated with blue lupine seeds. Acta Agrobotanica, 1995, vol. 48, no. 2, pp. 59-64. https://doi.org/10.5586/aa.1995.016
7. Martin R. A. Use of a high through-put jet sampler for monitoring viable airborne propagules of Fusarium in wheat. Canadian Journal of Plant Pathology, 1988, vol. 10, no. 4, pp. 359-360. https://doi.org/10.1080/07060668809501713
8. Chang K. F., Hwang S. F., Gossen B. D., Strelkov S. E., Turnbull G. D., Bing D. J. Effect of seeding practices, temperature and seed treatments on fusarium seedling blight of narrow-leaved lupin. Canadian Journal of Plant Science, 2011, vol. 91, no. 5, pp. 859-872. https://doi.org/10.4141/cjps2010-039
9. Berrocal-Lobo M., Molina A. Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science, 2008, vol. 13, no. 3, pp. 145-150. https://doi.org/10.1016/j.tplants.2007.12.004
10. Diener A. C., Ausubel F. M. Resistance to Fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics, 2005, vol. 171, no. 1, pp. 305-321. https://doi.org/10.1534/genetics.105.042218
11. Li G., Quiros C. F. Sequence-related amplifed polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, vol. 103, no. 2-3, pp. 455-461. https://doi.org/10.1007/s001220100570
12. Mutlu N., Boyaci F. H., Goymen M., Abak K. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theoretical and Applied Genetics, 2008, vol. 117, no. 8, pp. 1303-1312. https://doi.org/10.1007/s00122-008-0864-6
13. Ma J.-X., Wang T.-M., Lu X.-S. Genetic diversity of wild Medicago sativa by sequence-related amplified polymorphism markers in Xingjiang region, China. Pakistan Journal of Botany, 2013, vol. 45, no. 6, pp. 2043-2050.
14. Marchler-Bauer A., Lu Sh., Anderson J. B., Chitsaz F., Derbyshire M. K., De Weese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R., Gwadz M., Hurwitz D. I., Jackson J. D., Ke Zh., Lanczycki C. J., Lu F., Marchler G. H., Mullokandov M., Omelchenko M. V., Robertson C. L., Song J. S., Thanki N., Yamashita R. A., Zhang D., Zhang N., Zheng C., Bryant S. H. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research, 2011, vol. 39, pp. D225-D259. https://doi.org/10.1093/nar/gki069
15. Collins N. C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.-L., Huckelhoven R., Stein M., Freialden-hoven A., Somerville S. C., Schulze-Lefert P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 2003, vol. 425, no. 6961, pp. 973-977. https://doi.org/10.1038/nature02076
16. Jarsch I. K., Ott T. Perspectives on remorin proteins, membrane rafts, and their role during plant-microbe interactions. Molecular Plant-Microbe Interactions, 2011, vol. 24, no. 1, pp. 7-12. https://doi.org/10.1094/mpmi-07-10-0166
17. Li Y., Chen X., Chen Z., Cai R., Zhang H., Xiang Y. Identification and Expression Analysis of BURP Domain-Containing Genes in Medicago truncatula. Frontiers in Plant Science, 2016, vol. 7. 16 p. https://doi.org/10.3389/fpls.2016.00485