Oxidative stress in mitochondria of the brain tissue with aluminum neurotoxycosis and applying of glutathione and modulators of coenzyme A biosynthesis
https://doi.org/10.29235/1561-8323-2020-64-1-78-85
Abstract
Using an experimental model of aluminum neurotoxicosis, it was established that under conditions of chronic administration of aluminum chloride to rats, oxidative stress develops and inhibits the redox potential of the glutathione system in the mitochondrial and postmitochondrial fractions of the cerebral hemispheres. It was shown that the ingestion of N-acetylcysteine, as well as its combined use with coenzyme A biosynthesis precursors (D-panthenol or D-pantetin) against the background of aluminum neurotoxicosis, leads to a marked decrease in the production of reactive oxygen species by mitochondria, a decrease in the production of thiobarbituric acid reactive substances, and normalization of GSH content and its biosynthesis in brain tissue. The results indicate a high efficiency of the biosynthesis precursor of glutathione N-acetylcysteine in the prevention of oxidative stress in the chronic model of aluminum neurotoxicosis, which may be the rationale for its use as a modulator of mitochondrial redox status in the development of neurodegenerative pathology.
About the Authors
D. S. SemenovichRussian Federation
Semenovich Dmitry Sergeevich - Junior researcher.
50, bul’var Leninskogo Komsomola, 230030, Grodno
N. P. Kanunnikova
Russian Federation
Kannunikova Nina Pavlovna - D. Sc. (Biology), Professor, Chief researcher.
50, bul’var Leninskogo Komsomola, 230030, Grodno
А. G. Moiseenok
Russian Federation
Moiseenok Andrey Georgievich - Corresponding Member, D. Sc. (Biology), Professor, Chief researcher.
50, bul’var Leninskogo Komsomola, 230030, Grodno
References
1. Lezi E., Swerdlow R. H. Mitochondria in neurodegeneration. Advances in Experimental Medicine and Biology, 2012, vol. 942, pp. 269-286. https://doi.org/10.1007/978-94-007-2869-1_12
2. Mancuso M., Coppede F., Migliore L., Siciliano G., Murri L. Mitochondrial dysfunction, oxidative stress and neurodegeneration. Journal of Alzheimer’s Disease, 2006, vol. 10, no. 1, pp. 59-73. https://doi.org/10.3233/jad-2006-10110
3. Dringen R., Hirrlinger J. Glutathione pathways in the brain. Biological Chemistry, 2003, vol. 384, no. 4, pp. 505-516. https://doi.org/10.1515/bc.2003.059
4. Kulinsky V. I., Kolesnichenko L. S. The biological role of glutathione. Uspekhi sovremennoi biologii [Advances in Modern Biology], 1990, vol. 110, no. 1, pp. 20-32 (in Russian).
5. Perluigi M., Di Domenico F., Butterfield D. A. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiology of Disease, 2015, vol. 84, pp. 39-49. https://doi.org/10.1016/j.nbd.2015.03.014
6. Wang H., Cheng D., Jiang W., Ma Y. Mechanisms Underlying Aluminum Neurotoxicity Related to 14-3-3Z Protein. Toxicological Sciences, 2018, vol. 163, no. 1, pp. 45-56. https://doi.org/10.1093/toxsci/kfy021
7. Said M. M., Rabo М. М. Neuroprotective effects of eugenol against aluminium induced toxicity in the rat brain. Archives of Industrial Hygiene and Toxicology, 2017, vol. 68, no. 1, pp. 27-37. https://doi.org/10.1515/aiht-2017-68-2878
8. Pallotti F., Lenaz G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods in Cell Biology, 2007, vol. 80, pp. 3-44. https://doi.org/10.1016/s0091-679x(06)80001-4
9. Durfinova M., Brechtlova M., Luka B., Baroskova Z. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues. Chemical Papers, 2007, vol. 61, no. 4, pp. 321-325. https://doi.org/10.2478/s11696-007-0040-5
10. Rahman I., Kode A., Biswas S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols, 2006, vol. 1, no. 6, pp. 3159-3165. https://doi.org/10.1038/nprot.2006.378
11. Flohe L., Gunzler W. A. Assays of glutathione peroxidase. Methods in Enzymology, 1984, vol. 105, pp. 114-120. https://doi.org/10.1016/s0076-6879(84)05015-1
12. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 1974, vol. 249, no. 22, pp. 7130-7139.
13. Smith I. К., Vierheller T. L., Thome C. A. Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 1988, vol. 175, no. 2, pp. 408-413. https://doi.org/10.1016/0003-2697(88)90564-7
14. Volohonsky G., Tuby C. N. Y. H., Porat N., Wellman-Rousseau M., Visvikis A., Leroy P., Rashi Sh., Steinberg P., Stark A.-A. A spectrophotometric assay of gamma-glutamylcysteine synthetase and glutathione synthetase in crude extracts from tissues and cultured mammalian cells. Chemico-Biological Interactions, 2002, vol. 140, no. 1, pp. 49-65. https://doi.org/10.1016/s0009-2797(02)00017-0
15. Menon D., Board P. G. A fluorometric method to quantify protein glutathionylation using glutathione derivatization with 2,3-naphthalenedicarboxaldehyde. Analytical Biochemistry, 2013, vol. 433, no. 2, pp. 132-136. https://doi.org/10.1016/).b.2012.10.009