1. Pesetskii S. S. Hibrid micro- and nanofilling of structural plastics: synergism of reinforcing. Polimemye materialy i tekhnologii = Polymeric Materials and Technologies, 2015, vol. 1, no. 2, pp. 5 (in Russian).
2. Pesetskii S. S., Bogdanovich S. P., Sodyleva T. M. Polyamide 6 reinforcement by hybrid short basalt fiber and organoclay filling. Doklady Natsional ’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 2, pp. 74-83 (in Russian).
3. Pesetskii S. S., Bogdanovich S. P., Dubrovskii V. V., Sodyleva T. M., Aderikha V. N., Usova V. N. Morphology and properties of PA6 hybrid composites filled with short carbon fibers and organoclay. Polimemye materialy i tekhnologii = Polymer Materials and Technologies, 2016, vol. 2, no. 3. pp. 47-57 (in Russian). https://doi.org/10.32864/polymmattech-2016-2-3-47-57
4. Clifford M. J., Wan T. Fibre reinforced nanocomposites: Mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites. Polymer, 2010, vol. 51, no. 2, pp. 535-539. https://doi.org/10.1016/j.polymer.2009.11.046
5. Meszaros L., Deak T., Balogh G., Czvikovszky T, Czigany T. Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid nanocomposite. Composites Science and Technology, 2013, vol. 75, pp. 22-27. https://doi.org/10.1016/j.compscitech.2012.11.013
6. Pedrazzoli, D., Pegoretti A. Silica nanoparticles as coupling agents for polypropylene/glass composites. Composites Science and Technology, 2013, vol. 76. pp. 77-83. https://doi.org/10.1016/j.compscitech.2012.12.016
7. Arao Y., Yumitori S., Suzuki H., Tanaka T., Tanaka K., Katayama T. Mechanical properties of injection-molded carbon fiber/polypropylene composites hybridized with nanofillers. Composites Part A: Applied Science and Manufacturing, 2013, vol. 55, pp. 19-26. https://doi.org/10.1016/j.compositesa.2013.08.002
8. Asadi A., Miller M., Moon R. J., Kalaitzidou K. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellylose nanocrystals. Express Polymer Letters, 2016, vol. 10, no. 7, pp. 587-597. https://doi.org/10.3144/expresspolymlett.2016.54
9. Mucoz-Velez M. F., Valadez-Gonzalez A., Herrera-Franco P. J. Effect of fiber surface treatment on the incorporation of carbon nanotubes and on the micromechanical properties of a single-carbon fiber-epoxy matrix composite. Express Polymer Letters, 2017, vol. 11, no. 9, pp. 704-718. https://doi.org/10.3144/expresspolymlett.2017.68
10. Pegoretti A., Mahmood H., Pedrazzoli D., Kalaitzidou K. Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conference Series: Materials Science and Engineering, 2016, vol. 139, no. 1, pp. 012004. https://doi.org/10.1088/1757-899x/139/1/012004
11. Dubrovsky V. V., Aderikha V. N., Shapovalov V. A., Pesetskii S. S. Influence of hybrid filling with short glass fibers and thermally expanded graphite on the structure and properties of polyethyleneterephthalate. Doklady Natsional ’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no. 1, pp. 120-128 (in Russian), https://doi.org/10.29235/1561-8323-2018-62-1-120-128
12. Dubrovsky V. V., Shapovalov V. A., Aderikha V. N., Pesetskii S. S. Effect of hybrid filling with short glass fibers and expanded graphite on structure, rheological and mechanical properties of poly(ethylene terephthalate). Materials Today Communications, 2018, vol. 17. pp. 15-23. https://doi.org/10.1016/j.mtcomm.2018.08.002
13. Wunderlich B. Equilibrium melting of flexible linear macromolecules. Polymer Engineering and Science, 1978, vol. 18, no 6. pp. 431-436. https://doi.org/10.1002/pen.760180603
14. Dubrovsky V. V., Koval’ V. N., Bogdanovich S. P., Pesetskii S. S. On influence of short glass fibers on molecular and structural parameters, mechanical and rheological properties of poly-ethylene terephthalate. Materialy. Tekhnologii. Instrument [Materials. Technology. Tool], 2013, vol. 18, no. 4, pp. 50-57 (in Russian).