Алгоритм предсказания структур белковых комплексов на основе генной онтологии
https://doi.org/10.29235/1561-8323-2020-64-2-150-158
Анатацыя
Предлагается алгоритм сравнения белок-белковых комплексов на основе их функциональных свойств в терминах генной онтологии. Мера функциональной схожести комплексов интегрируется со структурной мерой для нахождения шаблона для моделирования белковых комплексов. Приводятся результаты моделирования белковых комплексов с помощью предложенного алгоритма.
Аб аўтарах
А. ХадаровичБеларусь
И. Анищенко
Злучаныя Штаты Амерыкі
П. Кундротас
Злучаныя Штаты Амерыкі
И. Ваксер
Злучаныя Штаты Амерыкі
А. Тузиков
Беларусь
Спіс літаратуры
1. Gene Ontology Consortium: going forward / The Gene Ontology Consortium // Nucleic Acids Research. – 2015. – Vol. 43. – P. D1049–D1056. https://doi.org/10.1093/nar/gku1179
2. Metrics for GO based protein semantic similarity: a systematic evaluation / C. Pesquita [et al.] // BMC Bioinformatics. – 2008. – Vol. 9. – P. S4. https://doi.org/10.1186/1471-2105-9-s5-s4
3. Resnik, P. Using Information Content to Evaluate Semantic Similarity in a Taxonomy / P. Resnik // Proceedings of the 14th International Joint Conference on Artificial Intelligence. – 1995. – Vol. 1. – P. 448–453.
4. A new measure for functional similarity of gene products based on Gene Ontology / A. Schlicker [et al.] // BMC Bioinformatics. – 2006. – Vol. 7, N 1. – Art. 302. https://doi.org/10.1186/1471-2105-7-302
5. Couto, F. M. Measuring semantic similarity between Gene Ontology terms / F. M. Couto, M. J. Silva, P. M. Coutinho // Data & Knowledge Engineering. – 2007. – Vol. 61, N 1. – P. 137–152. https://doi.org/10.1016/j.datak.2006.05.003
6. Zhang, Y. Scoring Function for Automated Assessment of Protein Structure Template Quality / Y. Zhang, J. Skolnick // PROTEINS: Structure, Function, and Bioinformatics. – 2004. – Vol. 57, N 4. – P. 702–710. https://doi.org/10.1002/prot.20264
7. Zhang, Y. TM-align: a protein structure alignment algorithm based on the TM-score / Y. Zhang, J. Skolnick // Nucleic Acids Research. – 2005. – Vol. 33, N 7. – P. 2302–2309.
8. Negroni, J. Assessing the Applicability of Template-Based Protein Docking in the Twilight Zone / J. Negroni, R. Mosca, P. Aloy // Structure. – 2014. – Vol. 22, N 9. – P. 1356–1362. https://doi.org/10.1016/j.str.2014.07.009
9. DOCKGROUND resource for studying protein-protein interfaces / D. Douguet [et al.] // Bioinformatics. – 2006. – Vol. 22, N 21. – P. 2612–2618. https://doi.org/10.1093/bioinformatics/btl447
10. DOCKGROUND: A comprehensive data resource for modeling of protein complexes / P. J. Kundrotas [et al.] // Protein Sci. – 2018. – Vol. 27, N 1. – P. 172–181. https://doi.org/10.1002/pro.3295
11. The Protein Data Bank / H. M. Berman [et al.] // Nucleic Acids Research. – 2000. – Vol. 28, N 1. – P. 235–242. https://doi.org/10.1093/nar/28.1.235
12. Structural templates for comparative protein docking / I. Anishchenko [et al.] // Proteins. – 2014. – Vol. 83, N 9. – P. 1563–1570. https://doi.org/10.1002/prot.24736
13. Das, S. Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives / S. Das, A. Abraham, A. Konar // Advances of Computational Intelligence in Industrial Systems. – 2008. – Vol. 116. – P. 1–38. https://doi.org/10.1007/978-3-540-78297-1_1
14. Sinha, R. Docking by structural similarity at protein-protein interfaces / R. Sinha, P. J. Kundrotas, I. A. Vakser // Proteins. – 2010. – Vol. 78, N 15. – P. 3235–3241. https://doi.org/10.1002/prot.22812
15. Gene ontology improves template selection in comparative protein docking / A. Hadarovich [et al.] // Proteins. – 2019. – Vol. 87, N 3. – P. 245–253. https://doi.org/10.1002/prot.25645