Structural and optical properties of Zn-implanted silica: effect of fluence and annealing
https://doi.org/10.29235/1561-8323-2020-64-3-273-281
Abstract
The phase-structural composition of a silica film grown on Si substrate implanted with Zn ions at room temperature with different fluences has been studied using transmission electron microscopy and electron diffraction. The small clusters (1–2 nm) and the large clusters (5–7 nm) have been formed in as-implanted silica films with the Zn concentration of 6–7 at % and 16–18 at %, respectively. Furnace annealing at 750 °С for two hours results both in the formation of the orthorhombic Zn2SiO4 phase (space group R-3) in the case of low fluence (5 · 1016 cm–2) and in the formation of the cubic ZnO phase (space group F-43m) in the case of high fluence (1 · 1017 cm–2). It has been shown that impurity loss during implantation and subsequent annealing increase with fluence of implanted ions. The fraction of Zn atoms in clusters has been estimated to be 15 % and 18 % for fluences (5 · 1016 cm–2) and (1 · 1017 cm–2), respectively. It has been shown that residual Zn impurities dissolved in silica matrix noticeably suppress the light-emitting properties of silica with embedded Zn2SiO4 and ZnO nanocrystals.
About the Authors
M. A. MakhavikouBelarus
Makhavikou Maxim A. – Researcher
7, kurchatov Str., 220108, Minsk
O. V. Milchanin
Belarus
Milchanin Oleg V. – Senior researcher
7, kurchatov Str., 220108, Minsk
I. N. Parkhomenko
Belarus
Parkhomenko Irina N. – Ph. D. (Physics and Mathematics), Senior researcher
5, kurchatov Str., 220108, Minsk
F. F. Komarov
Belarus
Komarov Fadei F. – Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Laboratory
7, kurchatov Str., 220108, Minsk
L. A. Vlasukova
Belarus
Vlasukova Liudmila A. – Ph. D. (Physics and Mathematics), Head of the Laboratory
5, kurchatov Str., 220108, Minsk
D. S. Korolev
Russian Federation
Korolev Dmitriy S. – Ph. D. (Physics and Mathematics), Researcher
23, Gagarin Ave., 603950, Nizhny Novgorod
A. V. Mudryi
Belarus
Mudryi Alexander V. – Ph. D. (Physics and Mathematics), Chief researcher
19, P. Brovka Str., 220072, Minsk
V. D. Zhivulko
Belarus
Zhivulko Vadim D. – Ph. D. (Physics and Mathematics), Senior researcher
19, P. Brovka Str., 220072, Minsk
Vuuren A. Janse van
South Africa
Arno Janse van Vuuren – Ph. D., Researcher
building 124, 6001, Port Elizabeth
References
1. Saadeldin M. M., Desouky O. A., Ibrahim M., khalil G. E., Helali M. y. Investigation of structural and electrical properties of ZnO varistor samples doped with different additives. NRIAG Journal of Astronomy and Geophysics, 2018, vol. 7, no. 2, pp. 201–207. https://doi.org/10.1016/j.nrjag.2018.06.002
2. you D., Xu C., Qin F., Zhu Z., Manohari A. G., Xu W., Zhao J., Liu W. Interface control for pure ultraviolet electroluminescence from nano-ZnO-based heterojunction devices. Science Bulletin, 2018, vol. 63, no. 1, pp. 38–45. https://doi.org/10.1016/j.scib.2017.12.006
3. Shetti N. P., Bukkitgar S. D., Reddy k. R., Reddy Ch. V., Aminabhavi T. M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics, 2019, vol. 141, art. 111417 (12 p.). https://doi.org/10.1016/j.bios.2019.111417
4. Hsueh T.-J., Peng C.-H., Chen W.-S. A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater. Sensors & Actuators: B. Chemical, 2020, vol. 304, art. 127319 (32 p.). https://doi.org/10.1016/j.snb.2019.127319
5. Zhong k. Photoluminescence from zinc oxide quantum dots embedded in silicon dioxide matrices. Spectroscopy Letters, 2013, vol. 46, no. 3, pp. 160–164. https://doi.org/10.1080/00387010.2012.704475
6. Amekura H., Umeda N., Sakuma y., kishimoto N., Buchal Ch. Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation. Applied Physics Letters, 2005, vol. 87, no. 1, art. 013109 (3 p.). https://doi.org/10.1063/1.1989442
7. Mayer M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. Application of Accelerators in Research and Industry. New york, 1999, vol. 475, pp. 541–544. https://doi.org/10.1063/1.59188
8. Biersack J. P., Ziegler J. F. The Stopping and Range of Ions in Solids. Ion Implantation Techniques. Berchtesgaden, 1982, vol. 10, pp. 122–156. https://doi.org/10.1007/978-3-642-68779-2_5
9. Swanson H. E., Gilfrich N. T., Cook M. I. Standard x-ray diffraction powder patterns. Washington, 1957, vol. 7, pp. 62–64. https://doi.org/10.6028/nbs.circ.539v7
10. Solozhenko V. L., kurakevych O. O., Sokolov P. S., Baranov A. N. kinetics of the Wurtzite-to-Rock-Salt Phase Transition in ZnO at High Pressure. Journal of Physical Chemistry A, 2011, vol. 115, no. 17, pp. 4354–4358. https://doi.org/10.1021/jp201544f
11. Sokolov P. S., Baranov A. N., Dobrokhotov Zh. V., Solozhenko V. L. Synthesis and Thermal Stability of Cubic ZnO in the Salt Nanocomposites. Russian Chemical Bulletin, 2010, vol. 59, no. 2, pp. 325–328. https://doi.org/10.1007/s11172-010-0082-7
12. Uchino T., kurumoto N., Sagawa N. Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials. Physical Review B, 2006, vol. 73, no. 23, art. 233203 (4 p.). https://doi.org/10.1103/physrevb.73.233203
13. Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 1998, vol. 239, no. 1–3, pp. 16–48. https://doi.org/10.1016/s0022-3093(98)00720-0
14. Gritsenko V. A., Novikov yu. N., Shaposhnikov A. V., Morokov yu. N. Numerical simulation of intrinsic defects in SiO 2 and Si3N4. Semiconductors, 2001, vol. 35, no. 9, pp. 997–1005. https://doi.org/10.1134/1.1403563
15. Zatsepin D. A., Zatsepin A. F., Boukhvalov D. W., kurmaev E. Z., Pchelkina Z. V., Gavrilov N. V. Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. Journal of NonCrystalline Solids, 2016, vol. 432, pp. 183–188. https://doi.org/10.1016/j.jnoncrysol.2015.10.002