Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Structural and optical properties of Zn-implanted silica: effect of fluence and annealing

https://doi.org/10.29235/1561-8323-2020-64-3-273-281

Abstract

The phase-structural composition of a silica film grown on Si substrate implanted with Zn ions at room temperature with different fluences has been studied using transmission electron microscopy and electron diffraction. The small clusters (1–2 nm) and the large clusters (5–7 nm) have been formed in as-implanted silica films with the Zn concentration of 6–7 at % and 16–18 at %, respectively. Furnace annealing at 750 °С for two hours results both in the formation of the orthorhombic Zn2SiO4 phase (space group R-3) in the case of low fluence (5 · 1016 cm–2) and in the formation of the cubic ZnO phase (space group F-43m) in the case of high fluence (1 · 1017 cm–2). It has been shown that impurity loss during implantation and subsequent annealing increase with fluence of implanted ions. The fraction of Zn atoms in clusters has been estimated to be 15 % and 18 % for fluences (5 · 1016 cm–2) and (1 · 1017 cm–2), respectively. It has been shown that residual Zn impurities dissolved in silica matrix noticeably suppress the light-emitting properties of silica with embedded Zn2SiO4 and ZnO nanocrystals.

About the Authors

M. A. Makhavikou
A. N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University
Belarus

Makhavikou Maxim A. – Researcher

7, kurchatov Str., 220108, Minsk



O. V. Milchanin
A. N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University
Belarus

Milchanin Oleg V. – Senior researcher

7, kurchatov Str., 220108, Minsk



I. N. Parkhomenko
Belarusian State University
Belarus

Parkhomenko Irina N. – Ph. D. (Physics and Mathematics), Senior researcher

5, kurchatov Str., 220108, Minsk



F. F. Komarov
A. N. Sevchenko Institute of Applied Physical Problems of the Belarusian State University
Belarus

Komarov Fadei F. – Corresponding Member, D. Sc. (Physics and Mathematics), Head of the Laboratory

7, kurchatov Str., 220108, Minsk



L. A. Vlasukova
Belarusian State University
Belarus

Vlasukova Liudmila A. – Ph. D. (Physics and Mathematics), Head of the Laboratory

5, kurchatov Str., 220108, Minsk



D. S. Korolev
Lobachevsky State University of Nizhny Novgorod
Russian Federation

Korolev Dmitriy S. – Ph. D. (Physics and Mathematics), Researcher

23, Gagarin Ave., 603950, Nizhny Novgorod



A. V. Mudryi
Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus
Belarus

Mudryi Alexander V. – Ph. D. (Physics and Mathematics), Chief researcher

19, P. Brovka Str., 220072, Minsk



V. D. Zhivulko
Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus
Belarus

Zhivulko Vadim D. – Ph. D. (Physics and Mathematics), Senior researcher

19, P. Brovka Str., 220072, Minsk



Vuuren A. Janse van
Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University
South Africa

Arno Janse van Vuuren – Ph. D., Researcher

building 124, 6001, Port Elizabeth



References

1. Saadeldin M. M., Desouky O. A., Ibrahim M., khalil G. E., Helali M. y. Investigation of structural and electrical properties of ZnO varistor samples doped with different additives. NRIAG Journal of Astronomy and Geophysics, 2018, vol. 7, no. 2, pp. 201–207. https://doi.org/10.1016/j.nrjag.2018.06.002

2. you D., Xu C., Qin F., Zhu Z., Manohari A. G., Xu W., Zhao J., Liu W. Interface control for pure ultraviolet electroluminescence from nano-ZnO-based heterojunction devices. Science Bulletin, 2018, vol. 63, no. 1, pp. 38–45. https://doi.org/10.1016/j.scib.2017.12.006

3. Shetti N. P., Bukkitgar S. D., Reddy k. R., Reddy Ch. V., Aminabhavi T. M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics, 2019, vol. 141, art. 111417 (12 p.). https://doi.org/10.1016/j.bios.2019.111417

4. Hsueh T.-J., Peng C.-H., Chen W.-S. A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater. Sensors & Actuators: B. Chemical, 2020, vol. 304, art. 127319 (32 p.). https://doi.org/10.1016/j.snb.2019.127319

5. Zhong k. Photoluminescence from zinc oxide quantum dots embedded in silicon dioxide matrices. Spectroscopy Letters, 2013, vol. 46, no. 3, pp. 160–164. https://doi.org/10.1080/00387010.2012.704475

6. Amekura H., Umeda N., Sakuma y., kishimoto N., Buchal Ch. Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation. Applied Physics Letters, 2005, vol. 87, no. 1, art. 013109 (3 p.). https://doi.org/10.1063/1.1989442

7. Mayer M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. Application of Accelerators in Research and Industry. New york, 1999, vol. 475, pp. 541–544. https://doi.org/10.1063/1.59188

8. Biersack J. P., Ziegler J. F. The Stopping and Range of Ions in Solids. Ion Implantation Techniques. Berchtesgaden, 1982, vol. 10, pp. 122–156. https://doi.org/10.1007/978-3-642-68779-2_5

9. Swanson H. E., Gilfrich N. T., Cook M. I. Standard x-ray diffraction powder patterns. Washington, 1957, vol. 7, pp. 62–64. https://doi.org/10.6028/nbs.circ.539v7

10. Solozhenko V. L., kurakevych O. O., Sokolov P. S., Baranov A. N. kinetics of the Wurtzite-to-Rock-Salt Phase Transition in ZnO at High Pressure. Journal of Physical Chemistry A, 2011, vol. 115, no. 17, pp. 4354–4358. https://doi.org/10.1021/jp201544f

11. Sokolov P. S., Baranov A. N., Dobrokhotov Zh. V., Solozhenko V. L. Synthesis and Thermal Stability of Cubic ZnO in the Salt Nanocomposites. Russian Chemical Bulletin, 2010, vol. 59, no. 2, pp. 325–328. https://doi.org/10.1007/s11172-010-0082-7

12. Uchino T., kurumoto N., Sagawa N. Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials. Physical Review B, 2006, vol. 73, no. 23, art. 233203 (4 p.). https://doi.org/10.1103/physrevb.73.233203

13. Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 1998, vol. 239, no. 1–3, pp. 16–48. https://doi.org/10.1016/s0022-3093(98)00720-0

14. Gritsenko V. A., Novikov yu. N., Shaposhnikov A. V., Morokov yu. N. Numerical simulation of intrinsic defects in SiO 2 and Si3N4. Semiconductors, 2001, vol. 35, no. 9, pp. 997–1005. https://doi.org/10.1134/1.1403563

15. Zatsepin D. A., Zatsepin A. F., Boukhvalov D. W., kurmaev E. Z., Pchelkina Z. V., Gavrilov N. V. Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. Journal of NonCrystalline Solids, 2016, vol. 432, pp. 183–188. https://doi.org/10.1016/j.jnoncrysol.2015.10.002


Review

Views: 897


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)