Identification of potential inhibitors of coronavirus SARS-CoV-2 using the methods of virtual screening and molecular modeling
https://doi.org/10.29235/1561-8323-2020-64-3-308-316
Abstract
To find small-molecule compounds that can simulate the structural and functional properties of the high affinity X77 ligand of the main protease of SARS-CoV-2 - etiologic agent of COVID-19, the virtual screening of 9 molecular libraries of the Pharmit web server containing over 213.5 million chemical structures was performed. Using molecular modeling, the neutralizing activity of the identified molecules was evaluated, resulting in 5 leader compounds promising for synthesis and testing for antiviral activity. The data obtained indicate that these compounds may be used as basic structures for the development of effective drugs to treat the novel coronavirus infection.
About the Authors
A. M. AndrianovBelarus
Andrianov Alexander M. – D. Sc. (Chemistry), Principal researcher
5/2, kuprevich Str., 220141, Minsk
Yu. V. Kornoushenko
Belarus
Kornoushenko Yuri V. – Ph. D. (Chemistry), Senior researcher
5/2, kuprevich Str., 220141, Minsk
A. D. Karpenko
Belarus
Karpenko Anna D. – Postgraduate student
6, Surganov Str., 220012, Minsk
A. V. Tuzikov
Belarus
Tuzikov Alexander V. – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, General Director
6, Surganov Str., 220012, Minsk
References
1. Lu R., Zhao X., Li J., Niu P., yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng y., Wang J., Lin y., yuan J., Xie Z., Ma J., Liu W. J., Wang D., Xu W., Holmes E. C., Gao G. F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. https://doi.org/10.1016/s0140-6736(20)30251-8
2. Chan J. F.-W., yuan S., kok k.-H., To k. k.-W., Chu H., yang J., Xing F., Liu J., yip C. C.-y., Poon R. W.-S., Tsoi H.-W., Lo S. k.-F., Chan k.-H., Poon V. k.-M., Chan W.-M., Ip J. D., Cai J.-P., Cheng V. C.-C., Chen H., Hui C. k.-M., yuen k.-y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, vol. 395, no. 10223, pp. 514–523. https://doi.org/10.1016/s0140-6736(20)30154-9
3. de Wit E., van Doremalen N., Falzarano D., Munster V. J. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviуws Microbiology, 2016, vol. 14, no. 8, pp. 523–534. https://doi.org/10.1038/nrmicro.2016.81
4. Chen y., Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020, vol. 92, no. 4, pp. 418–423. https://doi.org/10.1002/jmv.25681
5. Jin Z., Du X., Xu y., Deng y., Liu M., Zhao y., Zhang B., Li X., Zhang L., Peng C., Duan y., yu J., Wang L., yang k., Liu F., Jiang R., yang X., you T., Liu X., yang X., Bai F., Liu H., Liu X., Guddat L. W., Xu W., Xiao G., Qin C., Shi Z., Jiang H., Rao Z., yang H. Structure of MPro from COVID-19 virus and discovery of its inhibitors. bioRxiv, 2020. https://doi.org/10.1101/2020.02.26.964882
6. Liu X., Wang X.-J. Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines. bioRxiv, 2020. https://doi.org/10.1101/2020.01.29.924100
7. Li y., Zhang J., Wang N., Li H., Shi y., Guo G., Liu k., Zeng H., Zou Q. Therapeutic Drugs Targeting 2019-nCoV Main Protease by High-Throughput Screening. bioRxiv, 2020. https://doi.org/10.1101/2020.01.28.922922
8. Xu Z., Peng C., Shi y., Zhu Z., Mu k., Wang X., Zhu W. Nelfinavir was predicted to be a potential inhibitor of 2019- nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv, 2020. https://doi.org/10.1101/2020.01.27.921627
9. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 17, pp. 9241–9243. https://doi.org/10.1073/pnas.2004999117
10. Sunseri J., Koes D. R. Pharmit: interactive exploration of chemical space. Nucleic Acids Research, 2016, vol. 44, no. W1, pp. W442–W448. https://doi.org/10.1093/nar/gkw287
11. Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001, vol. 46, no. 1–3, pp. 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
12. Alhossary A., Handoko S. D., Mu y., kwoh C. k. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 2015, vol. 31, no. 13, pp. 2214–2216. https://doi.org/10.1093/bioinformatics/btv082
13. Durrant J. D., McCammon J. A. BINANA: A novel algorithm for ligand-binding characterization. Journal of Molecular Graphics Modelling, 2011, vol. 29, no. 6, pp. 888–893. https://doi.org/10.1016/j.jmgm.2011.01.004
14. Durrant J. D., McCammon J. A. NNScore 2.0: A neural-network receptor-ligand scoring function. Journal of Chemical Information and Modeling, 2011, vol. 51, no. 11, pp. 2897–2903. https://doi.org/10.1021/ci2003889
15. Sharma G., First E. A. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase. Journal of Biological Chemistry, 2009, vol. 284, no. 7, pp. 4179– 4190. https://doi.org/10.1074/jbc.m808500200