Activation of the peroxidase gene in potato plants expressing the gene of antimicrobial peptide MsrA1
https://doi.org/10.29235/1561-8323-2020-64-3-325-331
Abstract
Antimicrobial peptide MsrA1 is a synthetic hybrid molecule based on cecropin A from giant silk moth larvae and on melittin from melliferous bee venom. Transgenic potato plants of the Belarusian variety Odyssey with the constitutive expressiоn of msrA1 gene are shown to exhibit increased resistance to fungal pathogens Phytophthora infestans and Alternaria solani. Peroxidase genes expression studies using cDNA-PCR and DNA sequencing revealed the activation of the POX peroxidase gene in transgenic plants in the absence of pathogens. This may be indirect evidence of the increased formation of reactive oxygen species, which may explain special resistance to fungal pathogens. The data obtained also confirm a possible role of intracellular antimicrobial peptide in making the plants more resistant to oxidative stress by the way of activation of the host plant defense system.
About the Authors
A. Yu. MisyukevichBelarus
Misiukevich Ala Yu. – Junior researcher
27, Akademicheskaya Str., 220072, Minsk
T. A. Gapeeva
Belarus
Gapeeva Тамаra A. – Ph. D. (Biology), Senior researcher
27, Akademicheskaya Str., 220072, Minsk
T. G. Tretyakova
Belarus
Tretyakova Tatiana G. – Junior researcher
27, Akademicheskaya Str., 220072, Minsk
T. V. Semanyuk
Belarus
Semanyuk Tamara V. – Senior Researcher
2а, kovalev Str., 223013, Samokhvalovichi, Minsk district, Minsk region
I. D. Volotovski
Belarus
Volotovski Igor D. – Academician, D. Sc. (Biology), Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
References
1. kuppusamy R., Willcox M., Black D. StC., kumar N. Short Cationic Peptidomimetic Antimicrobials. Antibiotics (Basel), 2019, vol. 8, no. 2, pp. 44. https://doi.org/10.3390/antibiotics8020044
2. Zasloff M. Antimicrobial Peptides of Multicellular Organisms: My Perspective. Advances in Experimental Medicine and Biology, 2019, vol. 1117, pp. 3–6. https://doi.org/10.1007/978-981-13-3588-4_1
3. Musin kh. G. Antimicrobial peptides – a potential replacement for traditional antibiotics. Russian Journal of Infection and Immunity, 2018, vol. 8, no. 3, pp. 295–308 (in Russian). https://doi.org/10.15789/2220-7619-2018-3-295-308
4. Sinha R., Shukla P. Antimicrobial Peptides: Recent Insights on biotechnological Interventions. Protein & Peptide Letters, 2019, vol. 26, no. 2, pp. 79–87. https://doi.org/10.2174/0929866525666181026160852
5. Bennett W. F., Hong C. k., Wang y., Tieleman D. P. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. Journal of Chemical Theory and Computation, 2016. vol. 12, no. 9, pp. 4524–4533. https://doi.org/10.1021/acs.jctc.6b00265
6. Ilyas H., Datta A., Bhunia A. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management. Current Medicinal Chemistry, 2017, vol. 24, no. 13, pp. 1350–1364. https://doi.org/10.2174/0929867324666170116124558
7. Holaskova E., Galuszka P., Frebort I., Tufan Oz M. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnology Advances, 2015, vol. 33, no. 6, pp. 1005–1023. https://doi.org/10.1016/j.biotechadv.2015.03.007
8. Leite M. L., Sampaio k. B., Costa F. F., Franco O. L., Dias S. C., Cunha N. B. Molecular farming of antimicrobial peptides: available platforms and strategies for improving protein biosynthesis using modified virus vectors. Anais da Academia Brasileira de Ciências, 2019, vol. 91, no. 1, pp. e20180124. https://doi.org/10.1590/0001-3765201820180124
9. Weinhold A., Dorcheh E. k., Li R., Rameshkumar N., Baldwin I. T. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. eLife, 2018, vol. 7, p. e28715. https://doi.org/10.7554/elife.28715
10. yeung A. T., Gellatly S. L., Hancock R. E. Multifunctional cationic host defence peptides and their clinical applications. Cellular and Molecular Life Sciences, 2011, vol. 68, no. 13, pp. 2161–2176. https://doi.org/10.1007/s00018-011-0710-x
11. Cavallarin L., Andreu D., San Segundo B. Cecropin A – derived peptides are potent inhibitors of fungal plant pathogens. Molecular Plant-Microbe Interactions, 1998, vol. 11, no. 3, pp. 218–227. https://doi.org/10.1094/mpmi.1998.11.3.218
12. Osusky M., Zhou G., Osuska L., Hancock R. E., kay W. W., misra S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature biotechnology, 2000, vol. 18, no. 11, pp. 1162–1166. https://doi.org/10.1038/81145
13. Campo S., Manrique S., Garca-Martnez J., San Segundo B. Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnology Journal, 2008, vol. 6, no. 6, pp. 585–608. https://doi.org/10.1111/j.1467-7652.2008.00339.x
14. Vutto N. L., Gapeeva T. A., Pundik A. N., Tretyakova T. G., Volotovski I. D. Transgenic Belarussian-Bred Potato Plants Expressing the Genes for Antimicrobial Peptides of the Cecropin-Melittin Type. Russian Journal of Genetics, 2010, vol. 46, no. 12, pp. 1433–1439. https://doi.org/10.1134/s1022795410120057
15. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology, 1999, vol. 57, no. 3, pp. 231–245. https://doi.org/10.1016/s0006-2952(98)00227-5