Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

lipid composition of blood plasma high density lipoproteins as marker of metabolic reactions of urgent adaptations under acute stress

https://doi.org/10.29235/1561-8323-2020-64-5-583-589

Abstract

The article substantiates the mechanisms and significance of the increased contents of blood plasma cholesterol and high density lipoproteins (HDLP) under acute exposure to stress factors leading to activation of metabolism. To a great extent, these changes reflect the adaptation rearrangements in cell membranes that are predominantly haracterized by a decreased content of free cholesterol in their composition due to its efflux to HDLP particles . The changes in HDLP fatty acid composition also contribute to this process resulting in a reduction of membrane microviscosity so that to intensify the intracellular metabolism and to enhance cellular functional activity.

About the Authors

I. N. Semenenya
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Semenenya Igor N. - D. Sc. (Medicine), Professor, Director, Institute of Biochemistry of Biologically Active Substances of the National Academy of Sciences of Belarus.
50, Leninskogo Komsomola Boulevar, 230030, Grodno.



A. A. Astrouski
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Astrouski Aliaksandr A. - D. Sc. (Medicine), Professor, Head of the Group. Institute of Biochemistry of Biologically Active Substances of the National Academy of Sciences of Belarus.
50, Leninskogo Komsomola Boulevar, 230030, Grodno.



A. V. Shuriberko
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Shuriberko Aleksey V. - Head of the Sector, Institute of Biochemistry of Biologically Active Substances of the National Academy of Sciences of Belarus.
50, Leninskogo Komsomola Boulevar, 230030, Grodno.



Yu. E. Razvodovsky
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Razvodovsky Yuri E. - Head of the Laboratory, Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus.
50, Leninskogo Komsomola Boulevar, 2300030, Grodno.



References

1. Burstein M., Samaille J. Sur un dosage rapide du cholesterol lie aux a-et aux в-lipoproteines du serum. Clinica Chimica Acta, 1960, vol. 5, no. 4, pp. 609-613 (in Franch). https://doi.org/10.1016/0009-8981(60)90075-9

2. Gneushev E. T., Shitov H. H., Uglinskaia M. G., Gas chromatographic method for determination of blood plasma free fatty acid spectrum. Laboratornoe delo = Laboratory science, 1979, no. 1, pp. 29-33 (in Russian).

3. Vergeer M., Holleboom A. G., Kastelein J. J. P., Kuivenhoven J. A. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? Journal of Lipid Research, 2010, vol. 51, no. 8, pp. 2058-2073. https://doi.org/10.1194/jlr.r001610

4. Lopukhin Yu. М., Archakov A. I., Vladimirov Yu. A., Kogan E. M. Hypercholesterolemia. Moscow, 1983. 352 p. (in Russian).

5. Rohrl C., Stangl H. Cholesterol metabolism - physiological regulation and pathophysiological deregulation by the endoplasmic reticulum. Wiener Medizinische Wochenschrift, 2018, vol. 168, no. 11-12, pp. 280-285. https://doi.org/10.1007/s10354-018-0626-2

6. Casares D., Escriba P. V., Rossello C. A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International Journal of Molecular Sciences, 2019, vol. 20, no. 9, pp. 2167-2197. https://doi.org/10.3390/ijms20092167

7. Wang Y., Xu D. Effects of aerobic exercise on lipids and lipoproteins. Lipids in Health and Disease, 2017, vol. 16, no. 1, pp. 132-140. https://doi.org/10.1186/s12944-017-0515-5

8. Yao B., Meng L., Hao M., Zhang Yu., Gong T., Guo Zh. Chronic stress: a critical risk factor for atherosclerosis. Journal of International Medical Research, 2019, vol. 47, no. 4, pp. 1429-1440. https://doi.org/10.1177/0300060519826820

9. Vismont F. I., Basharkevich N. A. Central adrenergic and cholinergic mechanisms of regulation of lipoprotein metabolism and blood free fatty acid level in overheating. Fiziologiya i farmakologiya termoregulyatsii [Physiology and pharmacology of thermoregulation]. Minsk, 1985, pp. 176-186 (in Russian).

10. Hannon B. A., Khan N., Teran-Garcia M. Nutrigenetic Contributions to Dyslipidemia: A Focus on Physiologically Relevant Pathways of Lipid and Lipoprotein Metabolism. Nutrients, 2018, vol. 10, no. 10, pp. 1404-1421. https://doi.org/10.3390/nu10101404

11. Wang Y.-M., Zhang B., Xue Y., Li Zh.-J., Wang J.-F., Xue Ch.-H., Yanagita T. The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids in Health and Disease, 2010, vol. 9, no. 1, p. 4. https://doi.org/10.1186/1476-511x-9-4

12. Weissglas-Volkov D., Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. Journal of Lipid Research, 2010, vol. 51, no. 8, pp. 2032-2057. https://doi.org/10.1194/jlr.r004739

13. Palmisano B., Zhu L., Stafford J. M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity, 2017, vol. 1043, pp. 227-256. https://doi.org/10.1007/978-3-319-70178-3_12

14. Rinninger F., Heine M., Singaraja R., Hayden M., Brundert M., Ramakrishnan R., Heeren J. High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. Journal of Lipid Research, 2014, vol. 55, no. 9, pp. 1914-1924. https://doi.org/10.1194/jlr.m048819

15. Onal G., Kutlu O., Gozuacik D., Emre S. D. Lipid Droplets in Health and Disease. Lipids in Health and Disease, 2017, vol. 16, no. 1, pp. 128-143. https://doi.org/10.1186/s12944-017-0521-7


Review

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)