Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Glycosaminoglycans role in hippocampal neural networks interneuronal communications

https://doi.org/10.29235/1561-8323-2020-64-5-590-598

Abstract

In the development of neurotechnologies, the search for applications for invasive neuroelectronic devices is relevant. One of the promising areas can be the development of ways of influencing intercellular communication, that is, not by acting on pre-, post- and extrasynaptic receptors, but on the extracellular matrix surrounding neurons and glia. For the development of bioelectronic pharmaceuticals, it is important to search for stimulation parameters at which a controlled change in the structural and functional parameters of the nervous tissue is possible. We considered one of the actual mechanisms of the molecular pathogenesis of SARS-CoV-2 infection - the induction of glycosaminoglycan metabolism. It is assumed that, getting into the olfactory epithelium and the olfactory bulbs of the brain, the virus is able to reach the structures of the central nervous system. When modeling changes in the enzymatic activity of hyaluronidase (0.1; 1.0; 10.0 U/ml) for 5 minutes in one of the key structures of the limbic system - the hippocampus (3-4-week-old ratpups, n = 64), the conditions for the transformation of intercellular contacts were revealed and evoked electrical activity of populations of CA1 region. The recorded development of synaptic plasticity processes has an adaptive potential at hyaluronidase concentrations not exceeding 1.0 U/ml.
The in vitro method proposed in this work and a reasonable target for exposure - elements of the extracellular matrix, make it possible to simulate one of the mechanisms of the development of viral infection, optimize the process of preliminary screening of new medicinal substances that can minimize the risk of developing neuroinflammatory processes, and also substantiate the conditions for safe and/or therapeutic effects and electrical impulses on the elements of the nervous tissue.

About the Authors

S. G. Pashkevich
Institute of Physiology of the National Academy of Sciences of Belarus
Belarus

Pashkevich Svetlana G. - Ph. D. (Biology), Head of the Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus.
28, Akademicheskaya Str., 220072, Minsk.



N. S. Serdyuchenko
National Academy of Sciences of Belarus
Belarus

Serdyuchenko Nikolay S. - Corresponding Member, D. Sc. (Medicine), Professor, Academician-Secretary, National Academy of Sciences of Belarus.
66, Nezavisimosti Ave., 220072, Minsk.



References

1. Andersen P., Morris R., Amaral D., Bliss T., O'Keefe J. The Hippocampus Book. Oxford, 2006. 832 p. https://doi.org/10.1093/acprof:oso/9780195100273.001.0001

2. Altman J. Autoradiographic and Histological Studies of Postnatal Neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. Journal of Comparative Neurology, 1969, vol. 137, no. 4, pp. 433-457. https://doi.org/10.1002/cne.901370404

3. Mandelbrot B. The Fractal Geometry of Nature. San Francisco, 1982. 460 p.

4. Cailliet R. Soft Tissue pain and Disabiliti. Philadelphia, 1977. 120 p.

5. Habriyev R. U., Kamayev N. O., Danilova T. I., Kakhoyan E. G. Peculiarities of the action of hyaluronidase of different origin to the connective tissue. Biomeditsinskaya Khimiya = Biomedchemistry, 2016, vol. 62, no. 1, pp. 82-88 (in Russian). https://doi.org/10.18097/pbmc20166201082

6. Barros C. S., Franco S. J., Muller U. Extracellular Matrix: Functions in the Nervous System. Cold Spring Harb Perspectives in Biology, 2011, vol. 3, no. 1, art. a005108. https://doi.org/10.1101/cshperspect.a005108

7. Zyuzkov G. N. The new direction of targeted therapy in regenerative medicine is “the strategy of pharmacological regulation of intracellular signal transduction in regenerative-competent cells”. Innovatika i ekspertiza = Innovatics and Expert Examination, 2018, no. 1(22), pp. 143-152 (in Russian).

8. Andonegui-Elguera S., Taniguchi-Ponciano K., Gonzalez-Bonilla C. R., Torres J., Mayani H., Herrera L. A., Pena-Martmez E., Silva-Roman G., Vela-Patino S., Ferreira-Hermosillo A., Ramirez-Renteria C., Carvente-Garcia R., Mata-Lozano C., Marrero-Rodriguez D., Mercado M. Molecular Alterations Prompted by SARS-CoV-2 Infection: Induction of Hyaluronan, Glycosaminoglycan and Mucopolysaccharide Metabolism. Archives of Medical Research, 2020. 9 р. https://doi.org/10.1016/j.arcmed.2020.06.011

9. Mekhtiev S. N., Stepanenko V. V., Zinovieva E. N., Mekhtieva O. A. Modern concepts of liver fibrosis and methods of its correction. Farmateka, 2014, no. 6(279), pp. 80-87 (in Russian).

10. Meinhardt J., Radke J., Dittmayer C., Mothes R., Franz J., Laue M., Schneider J., Brunink S., Hassan O., Stenzel W., Windgassen M., RoBler L., Goebel H.-H., Martin H., Nitsche A., Schulz-Schaeffer W. J., Hakroush S., Winkler M. S., Tampe B., Elezkurtaj S., Horst D., Oesterhelweg L., Tsokos M., Heppner B. I., Stadelmann Ch., Drosten Ch., Corman V. M., Radbruch H., Heppner F. L. Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients. bioRxiv, 2020. https://doi.org/10.1101/2020.06.04.135012

11. Grimaldi S., Lagarde S., Harle J.-R., Boucraut J., Guedj E. Autoimmune encephalitis concomitant with SARS-CoV-2 infection: insight from 18 F-FDG PET imaging and neuronal autoantibodies. Journal of Nuclear Medicine, 2020. https://doi.org/10.2967/jnumed.120.249292

12. Garkun Yu. S., Yakubovich N. V., Denisov A. A., Molchanov P. G., Emel'janova A. A., Pashkevich S. G., Kulchitsky V. A. generation of excitatory postsynaptic potentials in the hippocampus after functional modification of glycosaminoglycans. Bulletin of Experimental Biology and Medicine, 2008, vol. 145, no. 4, pp. 395-397. https://doi.org/10.1007/s10517-008-0100-z

13. Kul'chitskii S. V., Yakubovich N. V., Emel'yanova A. A., Garkun Yu. S., Pashkevich S. G., Kul'chitskii V. A. Changes in Neuropil Ultrastructure in Hippocampal Field CA1 in Rat Pups after Application of Hyaluronidase. Neuroscience and Behavioral Physiology, 2009, vol. 39, no. 6, pp. 517-521. https://doi.org/10.1007/s11055-009-9162-2

14. Cantuti-Castelvetri L., Ojha R., Pedro L. D., Djannatian M., Franz J., Kuivanen S., Kallio K., Kaya T., Anastasina M., Smura T., Levanov L., Szirovicza L., Tobi A., Kallio-Kokko H., Osterlund P., Joensuu M., Meunier F. A., Butcher S., Winkler M. S., Mollenhauer B., Helenius A., Gokce O., Teesalu T., Hepojoki J., Vapalahti O., Stadelmann C., Balistreri G., Simons M. Neuro-pilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv, 2020. https://doi.org/10.1101/2020.06.07.137802

15. Moutal A., Martin L. F., Boinon L., Gomez K., Ran D., Zhou Y., Stratton H. J., Cai S., Luo S., Gonzalez K. B., Perez-Miller S., Patwardhan A., Ibrahim M. M., Khanna R. SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. bioRxiv, 2020. https://doi.org/10.1101/2020.07.17.209288


Review

Views: 567


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)