Assessment of the differential gene expression in anthracnose treated seedlings of yellow lupin
https://doi.org/10.29235/1561-8323-2021-65-3-330-336
Abstract
Seedlings of yellow lupine treated with Colletotrichum lupini isolate were studied by the method of SRAP-analysis with the purpose to assess the differential expression of genes. As a result, the PCR fragment corresponding to tolerant seedlings was found. The genetic determinants found are likely involved in the control of the resistance (tolerance) of lupine plants to anthracnose.
About the Authors
E. N. SysoliatinBelarus
Sysoliatin Eugeny N. – Junior researcher
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
V. S. Anokhina
Belarus
Anokhina Vera S. – Ph. D. (Biology), Associate professor
4, Nezavisimosti Ave., 220004, Minsk, Republic of Belarus
N. V. Anisimova
Belarus
Anisimova Natalia V. – Ph. D. (Biology), Senior researcher
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
O. G. Babak
Belarus
Babak Olga G. – Ph. D. (Biology), Associate professor, Leading researcher
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
A. V. Kilchevsky
Belarus
Kilchevsky Alexander V. – Academician, D. Sc. (Biology), Professor, Laboratory Scientific Director
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
References
1. Glencross B., Curnow J., Hawkins W. Assessment of the nutritional variability of lupins as an aquaculture feed ingredient: Final Report for the Grains Research Committee of WA Project Fisheries Research Contract Report No. 6. Department of Fisheries. Western Australia, 2003. 44 p.
2. Glencross B., Evans D., Hawkins W., Jones B. Evaluation of dietary inclusion of yellow lupin (Lupinus luteus) kernel meal on the growth, feed utilisation and tissue histology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2004, vol. 235, no. 1–4, pp. 411–422. https://doi.org/10.1016/j.aquaculture.2003.09.022
3. Ogura T., Ogihara J., Sunairi M., Takeishi H., Aizawa T., Olivos-Trujillo M. R., Maureira-Butler I. J., Salvo-Garrido H. E. Proteomic characterization of seeds from yellow lupin (Lupinus luteus L). Proteomics, 2014, vol. 14, no. 12, pp. 1543–1554. https://doi.org/10.1002/pmic.201300511
4. Adhikari K. N., Thomas G., Buirchell B. J., Sweetingham M. W. Identification of anthracnose resistance in yellow lupin (Lupinus luteus L.) and its incorporation into breeding lines. Plant Breeding, 2011, vol. 130, no. 6, pp. 660–664. https://doi.org/10.1111/j.1439-0523.2011.01880.x
5. Kuptsov N. S., Mironova T. P. The main results of lupine species selection in Belarus and subsequent stages of its domestication. Genetika i biotechnologiya XXI veka. Fundamentalnye I prikladnye aspekty: materialy mezhdunarodnoi nauchnoi konferencii [Genetics and biotechnology of XXI century. Fundamental and applied aspects: proceedings of International Scientific Conference]. Minsk, 2008, pp. 119–120 (in Russian).
6. Gonzalez L., Straub S., Doyle J., Ortega P., Garrido H., Butler I. Development of microsatellite markers in Lupinus luteus (Fabaceae) and cross-species amplification in other lupine species. American Journal of Botany, 2010, vol. 97, no. 8, pp. e72–e74. https://doi.org/10.3732/ajb.1000170
7. Parra-González L. B., Aravena-Abarzúa G. A., Navarro-Navarro C. S., Udall J., Maughan J., Peterson L. M., Salvo- Garrido H. E., Maureira-Butler I. J. Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics, 2012, vol. 13, no. 1, pp. 425. https://doi.org/10.1186/1471-2164-13-425
8. Osorio C. E., Udall J. A., Salvo-Garrido H., Maureira-Butler I. J. Development and characterization of InDel markers for Lupinus luteus L. (Fabaceae) and cross-species amplification in other Lupin species. Electronic Journal of Biotechnology, 2018, vol. 31, pp. 44–47. https://doi.org/10.1016/j.ejbt.2017.11.002
9. Lichtin N., Salvo-Garrido H., Till B., Caligari P. D. S., Rupayan A., Westermeyer F., Olivos M. Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Scientific Reports, 2020, vol. 10, no. 1, art. 19174. https://doi.org/10.1038/s41598-020-76197-w
10. Li G., Quiros C. F. Sequence-related amplifed polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, vol. 103, no. 2–3, pp. 455–461. https://doi.org/10.1007/s001220100570
11. Mutlu N., Boyaci F. H., Göçmen M., Abak K. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theoretical and Applied Genetics, 2008, vol. 117, no. 8, pp. 1303–1312. https://doi.org/10.1007/s00122-008-0864-6
12. Ma J.-X., Wang T.-M., Lu X.-S. Genetic diversity of wild Medicago sativa by sequence-related amplified polymorphism markers in Xingjiang region, China. Pakistan Journal of Botany, 2013, vol. 45, no. 6, pp. 2043–2050.
13. Lu S., Wang J., Chitsaz F., Derbyshire M. K., Geer R. C., Gonzales N. R., Gwadz M., Hurwitz D. I., Marchler G. H., Song J. S., Thanki N., Yamashita R. A., Yang M., Zhang D., Zheng C., Lanczycki C. J., Marchler-Bauer A. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research, 2020, vol. 48, no. D1, pp. D265–D268. https://doi.org/10.1093/nar/gkz991
14. Gilyarov M. S., Babaev A. A., Vinberg G. G., Zavarzin G. A. [et al.] Biological encyclopedic dictionary. 2d ed. Moscow, 1986. 846 p. (in Russian).