Radiation tolerance of nanostructured TiCrN coatings
https://doi.org/10.29235/1561-8323-2021-65-4-412-421
Abstract
Nanostructured TixCr1–xN coatings of various compositions 0.58 ≤ x ≤ 0.8 on the substrates made of AISI 304 stainless steel and monocrystalline silicon were formed by the method of separable vacuum-arc deposition. The elemental composition was studied by Rutherford backscattering spectrometry of helium ions. The structural-phase state and the morphology were examined by X-ray diffraction, optical and scanning electron microscopy, tribomechanical tests of the initial coatings were also carried out. The radiation tolerance of the nanostructured TixCr1–xN coatings within 0.58 ≤ x ≤ 0.8 under He+ ion irradiation with an energy of 500 keV in the fluence range of 5·1016–3·1017 ions/cm2 was studied for the first time. It was found that the TixCr1–xN coatings within 0.58 ≤ x ≤ 0.8 withstand irradiation without significant changes in the structure up to a fluence of 2·1017 ions/cm2, when a partial coating flaking (exfoliation) up to a depth of the projected range of helium ions takes place. A decrease in the average size of crystallites of coatings and the crystal lattice period reduction after radiation exposure were detected. The decrease in the microhardness of the TixCr1–xN coatings of all compositions after irradiation was found.
About the Authors
S. V. KonstantinovBelarus
Konstantinov Stanislav V. – Ph. D. (Physics and Mathematics), Senior researcher
7, Kurchatov Str., 220045, Minsk
F. F. Komarov
Belarus
Komarov Fadey F. – Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory
7, Kurchatov Str., 220045, Minsk
V. E. Strel’nitskij
Ukraine
Strel’nitskij Vladimir E. – D. Sc. (Physics and Mathematics), Senior researcher, Head of the Laboratory
1, Akademicheskaya Str., 61108, Kharkov
References
1. Xue J. X., Zhang G. J., Xu F. F., Zhang H. B., Wang X. G., Peng S. M., Long X. G. Lattice expansion and microstructure evaluation of Ar ion-irradiated titanium nitride. Nuclear Instruments and Methods in Physics Research B, 2013, vol. 308, pp. 62–67. https://doi.org/10.1016/j.nimb.2013.05.011
2. Andrievskii R. А. Radiation Stability of Nanomaterials. Nanotechnologies in Russia, 2011, vol. 6, no. 5–6, pp. 357– 369. https://doi.org/10.1134/s1995078011030037
3. Andrievski R. А. Nanostructures under extremes. Physics-Uspekhi, 2014, vol. 57, no. 10, pp. 945–958. https://doi.org/10.3367/ufne.0184.201410a.1017
4. Shen T. D. Radiation tolerance in a nanostructure: Is smaller better? Nuclear Instruments and Methods in Physics Research B, 2008, vol. 266, no. 6, pp. 921–925. https://doi.org/10.1016/j.nimb.2008.01.039
5. Mayrhofer P. H., Mitterer C., Hultman L., Clemens H. Microstructural design of hard coatings. Progress in Materials Science, 2006, vol. 51, no. 8, pp. 1032–1114. https://doi.org/10.1016/j.pmatsci.2006.02.002
6. Milosev I., Strehbtow H.-H., Navinsek B. Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation. Thin Solid Films, 1997, vol. 303, no. 1–2, pp. 246–254. https://doi.org/10.1016/s0040-6090(97)00069-2
7. Otani Y., Hofmann S. High temperature oxidation behaviour of (Ti1−xCrx)N coatings. Thin Solid Films, 1996, vol. 287, no. 1–2, pp. 188–192. https://doi.org/10.1016/s0040-6090(96)08789-5
8. Uglov V. V., Anishchik V. M., Zlotski S. V., Abadias G., Dub S. N. Stress and mechanical properties of Ti–Cr–N gradient coatings deposited by vacuum arc. Surface and Coatings Technology, 2005, vol. 200, no. 1–4, pp. 178–181. https://doi.org/10.1016/j.surfcoat.2005.02.136
9. Akbarzadeh M., Shafyei A., Salimijazi H. R. Characterization of TiN, CrN and (Ti, Cr)N Coatings Deposited by Cathodic ARC Evaporation. International Journal of Engineering Transactions A: Basics, 2014, vol. 27, no. 7, pp. 1127–1132.
10. Belous V. A., Vasiliev V. V., Luchaninov A. A., Reshetnyak E. N., Strel’nitskij V. E., Tolmacheva G. N., Goltvyanitsa V. S., Goltvyanitsa S. K. Hard coatings Ti–Al–N deposited from filtered vacuum-arc plasma. Physical surface engineering, 2009, vol. 7, no. 3, pp. 216–222 (in Russian).
11. Komarov F. F., Konstantinov V. M., Kovalchuk A. V., Konstantinov S. V., Tkachenko H. A. The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and TiAlN coatings. Wear, 2016, vol. 352–353, pp. 92–101. https://doi.org/10.1016/j.wear.2016.02.007
12. Cavaleiro A., de Hosson J. T., eds. Nanostructured Coatings. Berlin, 2006. 648 p. https://doi.org/10.1007/0-387-48756-5
13. Hultman L. Thermal stability of nitride thin films. Vacuum, 2000, vol. 57, no. 1, pp. 1–30. https://doi.org/10.1016/s0042-207x(00)00143-3
14. Samsonov G. V., Vinitsky I. M. Refractory compounds. 2nd ed. Moscow, 1976. 560 p. (in Russian).
15. Rusakov A. A. Radiography of metals. Moscow, 1977. 480 p. (in Russian).
16. Komarov F. F., Konstantinov S. V., Strel’nitskij V. Е. Radiation resistance of nanostructured TiN, TiAlN, TiAlYN coatings. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2014, vol. 58, no. 6, pp. 22–27 (in Russian).
17. Komarov F. F., Pogrebnyak A. D., Konstantinov S. V. Radiation Resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings. Technical Physics, 2015, vol. 60, no. 10, pp. 1519–1524. https://doi.org/10.1134/s1063784215100187
18. Komarov F. F., Konstantinov S. V., Strel’nitskij V. E., Pilko V. V. Effect of Helium ion irradiation on the structure, the phase stability, and the microhardness of TiN, TiAlN, and TiAlYN nanostructured coatings. Technical Physics, 2016, vol. 61, no. 5, pp. 696–702. https://doi.org/10.1134/s106378421605011x
19. Ziegler J. F., Biersack J. P., Littmark U. The Stopping and Range of Ions in Solids. New York, 1985.
20. van Vuuren A. J., Neethling J. H., Skuratov V. A., Uglov V. V., Petrovich S. The effect of He and swift heavy ions on nanocrystalline zirconium nitride. Nuclear Instruments and Methods in Physics Research B, 2014, vol. 326, pp. 19–22. https://doi.org/10.1016/j.nimb.2013.10.063
21. Yang Y., Dickerson C. A., Allen T. R. Radiation stability of ZrN under 2.6 MeV proton irradiation. Journal of Nuclear Materials, 2009, vol. 392, no. 2, pp. 200–205. https://doi.org/10.1016/j.jnucmat.2009.03.040
22. Shen T. D., Feng S., Tang M., Valdez J. A., Wang Y., Sickafus K. E. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Applied Physics Letters, 2007, vol. 90, no. 26, pp. 263115. https://doi.org/10.1063/1.2753098
23. Hong M., Ren F., Zhang H., Xiao X., Yang B., Tian C., Fu D., Wang Y., Jiang C. Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses. Applied Physics Letters, 2012, vol. 101, no. 15, pp. 153117. https://doi.org/10.1063/1.4759004
24. Morgiel J., Grzonka J., Mania R., Zimowski S., Labar J. L., Fogarassy Z. Relation between microstructure and hardness of nano-composite CrN/Si3N4 coatings obtained using CrSi single target magnetron system. Vacuum, 2013, vol. 90, pp. 170–175. https://doi.org/10.1016/j.vacuum.2012.03.043
25. Musil J. Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 2000, vol. 125, no. 1–3, pp. 322–330. https://doi.org/10.1016/s0257-8972(99)00586-1