Pressure effect during the formation of a selective layer on the structure and performance of dynamic composite membranes for pervaporation
https://doi.org/10.29235/1561-8323-2021-65-4-431-438
Abstract
Composite membranes for pervaporation were prepared by forming a selective layer based on cross-linked polyvinyl alcohol (PVA) on the porous membrane-substrate surface in the dynamic mode (via PVA solution ultrafiltration). It was found that the pressure growth results in increasing the thickness of the composite membrane selective layer. Composite membrane contact angle, flux, water content in permeate in ethanol/water (mass ratio 90/10) pervaporation were revealed to have maximum values at 3–4 atm depending on the PVA concentration in the feed solution. It was shown that the revealed dependence of the contact angle, selectivity, and permeability on the pressure of the selective layer formation is due to the compaction of the polymer matrix-substrate under the action of the transmembrane pressure and its relaxation after pressure release. When using elevated pressures (more than 3–4 atm), the relaxation of the polymer matrix causes the microdefect to form as a result of deformation of the selective layer.
About the Authors
K. S. BurtsBelarus
Burts Katsiaryna S. – Junior researcher, Postgraduate student
13, Surganov Str., 220072, Minsk
T. V. Plisko
Belarus
Plisko Tatiana V. – Ph. D. (Chemistry), Associate professor, Head of the Laboratory
13, Surganov Str., 220072, Minsk
A. V. Bildyukevich
Belarus
Bildyukevich Alexandr V. – Academician, D. Sc. (Chemistry), Professor, Director
13, Surganov Str., 220072, Minsk
G. Li
Poland
Li Guoqiang – Postgraduate student
7, Gagarin Str., 87-100, Torun
J. Kujawa
Poland
Kujawa Joanna – D. Sc. (Chemistry), Associate professor
7, Gagarin Str., 87-100, Torun
M. V. Shishonok
Belarus
Shishonok Margarita V. – Ph. D. (Chemistry), Associate professor
14, Leningradskaya Str., 220006, Minsk
W. Kujawski
Poland
Kujawski Wojciech – D. Sc. (Chemistry), Professor, Head of the Department
7, Gagarin Str., 87-100, Torun
References
1. Jyothi M. S., Reddy K. R., Soontarapa K., Naveen S., Raghu A. V., Kulkarni R. V., Suhas D. P., Shetti N. P., Nadagouda M. N., Aminabhavi T. M. Membranes for dehydration of alcohols via pervaporation. Journal of Environmental Management, 2019, vol. 242, pp. 415–429. https://doi.org/10.1016/j.jenvman.2019.04.043
2. Drioli E., Zhang S., Basile A. On the coupling effect in pervaporation. Journal of Membrane Science, 1993, vol. 81, no. 1–2, pp. 43–55. https://doi.org/10.1016/0376-7388(93)85030-z
3. Baker R. W.Membrane technology and applications. 2nd ed. Chichester, 2004. XII, 538 p. https://doi.org/10.1002/0470020393
4. Akamatsu K., Okuyama M., Mitsumori K., Yoshino A., Nakao A., Nakao S. I. Effect of the composition of the copolymer of carboxybetaine and n-butylmethacrylate on low-fouling property of dynamically formed membrane. Separation and Purification Technology, 2013, vol. 118, pp. 463–469. https://doi.org/10.1016/j.seppur.2013.07.034
5. Na L., Zhongzhou L., Shuguang X. Dynamically formed poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics. Journal of Membrane Science, 2000, vol. 169, no. 1, pp. 17–28. https://doi.org/10.1016/s0376-7388(99)00327-0
6. Lu D., Cheng W., Zhang T., Lu X., Liu Q., Jiang J., Ma J. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion. Separation and Purification Technology, 2016, vol. 165, pp. 1–9. https://doi.org/10.1016/j.seppur.2016.03.034
7. Chen C. C., Chiang B. H. Formation and characteristics of zirconium ultrafiltration dynamic membranes of various pore sizes. Journal of Membrane Science, 1998, vol. 143, no. 1–2, pp. 65–73. https://doi.org/10.1016/s0376-7388(98)00017-9
8. Liu T., Zhou H., Graham N., Lian Y., Yu W., Sun K. The antifouling performance of an ultrafiltration membrane with pre-deposited carbon nanofiber layers for water treatment. Journal of Membrane Science, 2018, vol. 557, pp. 87–95. https://doi.org/10.1016/j.memsci.2018.04.018
9. Zhang G., Gu W., Ji S., Liu Z., Peng Y., Wang Z. Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures. Journal of Membrane Science, 2006, vol. 280, no. 1–2, pp. 727–733. https://doi.org/10.1016/j.memsci.2006.02.031
10. Wu S. E., Hwang K. J., Cheng T. W., Lin Y. C., Tung K. L. Dynamic membranes of powder-activated carbon for removing microbes and organic matter from seawater. Journal of Membrane Science, 2017, vol. 541, pp. 189–197. https://doi.org/10.1016/j.memsci.2017.07.006
11. Rumyantsev M., Shauly A., Yiantsios S. G., Hasson D., Karabelas A. J., Semiat R. Parameters affecting the properties of dynamic membranes formed by Zr hydroxide colloids. Desalination, 2000, vol. 131, no. 1–3, pp. 189–200. https://doi.org/10.1016/s0011-9164(00)90018-3
12. Pan Y., Wang W., Wang W., Wang T. Prediction of particle deposition and layer growth in the preparation of a dynamic membrane with cross-flow microfiltration. RSC Advances, 2015, vol. 5, no. 108, pp. 89015–89024. https://doi.org/10.1039/c5ra14572d
13. Ji S., Zhang G., Liu Z., Peng Y., Wang Z. Evaluations of polyelectrolyte multilayer membranes assembled by a dynamic layer-by-layer technique. Desalination, 2008, vol. 234, no. 1–3, pp. 300–306. https://doi.org/10.1016/j.desal.2007.09.098
14. Guo J., Zhang G., Wu W., Ji S., Qin Z., Liu Z. Dynamically formed inner skin hollow fiber polydimethylsiloxane/polysulfone composite membrane for alcohol permselective pervaporation. Chemical Engineering Journal, 2010, vol. 158, no. 3, pp. 558–565. https://doi.org/10.1016/j.cej.2010.01.053