Engineering a whole rat liver scaffold
https://doi.org/10.29235/1561-8323-2021-65-4-448-455
Abstract
Engineering a three-dimensional scaffold opens up great prospects for creation of manufacturing biological artificial organs. The article presents a method of perfusion decellularization of a rat liver, with the main problems and options for their solution being analyzed. Perfusion of a donor liver with 0.1 % a sodium dodecyl sulfate (SDS) solution allows obtaining a high-quality cell-free matrix characterized by preserved hepatic architectonics, patent vascular bed, residual DNA of less than 1 %, no signs of collagen fibers destruction and tissue edema. The obtained scaffold can be used for recellularization by allogeneic cell cultures when creating volumetric tissue-engineered designs.
About the Authors
A. D. DubkoBelarus
Dubko Andrei D. – Junior researcher
23/1, Dolgobrodskaya Str., 220070, Minsk
M. Yu. Yurkevich
Belarus
Yurkevich Mariya Yu. – Ph. D. (Biology), Associate professor
23/1, Dolgobrodskaya Str., 220070, Minsk
M. V. Labai
Belarus
Labai Marina V. – Senior lecture
23/1, Dolgobrodskaya Str., 220070, Minsk
A. V. Svirskaya
Belarus
Svirskaya Alesia V. – Student
23/1, Dolgobrodskaya Str., 220070, Minsk
N. G. Yukhanov
Belarus
Yukhanov Nikita G. – Pathologist
43, Frunzenskaya Str., Borovlyany vill., Minsk district
T. V. Savitskaya
Belarus
Savitskaya Tatiana V. – Ph. D. (Biology), Doctor
43, Frunzenskaya Str., Borovlyany vill., Minsk district
D. B. Nizheharodava
Belarus
Nizheharodava Daria B. – Ph. D. (Biology), Associate professor
23/1, Dolgobrodskaya Str., 220070, Minsk
M. M. Zafranskaya
Belarus
Zafranskaya Marina M. – D. Sc. (Medicine), Head of the Department
23/1, Dolgobrodskaya Str., 220070, Minsk
References
1. Heydari Z., Najimi M., Mirzaei H., Shpichka A., Ruoss M., Farzaneh Z., Montazeri L., Piryaei A., Timashev P., Gramignoli R., Nussler A., Baharvand H., Vosough M. Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cells, 2020, vol. 9, no. 2, pp. 304. https://doi.org/10.3390/cells9020304
2. Nicolas C. T., Hickey R. D., Chen H. S., Mao S. A., Higuita M. L., Wang Y., Nyberg S. L. Concise review: Liver regenerative medicine: From hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells, 2017, vol. 35, no. 1, pp. 42–50. https://doi.org/10.1002/stem.2500
3. Hamooda M. Hepatocyte transplantation in children with liver cell failure. Electron Physician, 2016, vol. 8, no. 10, pp. 3096–3101. https://doi.org/10.19082/3096
4. Wang F., Zhou L., Ma X., Ma W., Wang C., Lu Y., Chen Y., An L., An W., Yang Y. Monitoring of intrasplenic hepatocyte transplantation for acute-on-chronic liver failure: a prospective five-year follow-up study. Transplantation Proceeding, 2014, vol. 46, no. 1, pp. 192–198. https://doi.org/10.1016/j.transproceed.2013.10.042
5. Alfaifi M., Eom Y. W., Newsome P. N., Baik S. K. Mesenchymal stromal cell therapy for liver diseases. Journal of Hepatology, 2018, vol. 68, no. 6, pp. 1272–1285. https://doi.org/10.1016/j.jhep.2018.01.030
6. Sears N. A., Seshadri D. R., Dhavalikar P. S., Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Engineering Part B: Reviews, 2016, vol. 22, no. 4, pp. 298–310. https://doi.org/10.1089/ten.teb.2015.0464
7. Evstratova E. S., Shegay P. V., Popov S. V., Vorobyev N. V., Ivanov S. A., Kaprin A. D. Modern opportunities of regenerative medicine: biofacturing of hollow organs. Russian Journal of Transplantology and Artificial Organs, 2019, vol. 21, no. 2, pp. 92–103 (in Russian). https://doi.org/10.15825/1995-1191-2019-2-92-103
8. Bachmann A., Moll M., Gottwald E., Nies C., Zantl R., Wagner B., Burkhardt B., Martinez Sanchez J., Ladurner R., Thasler W., Damm G., Nussler A. K. 3D cultivation technique for primary human hepatocytes. Microarrays, 2015, vol. 4, no. 1, pp. 64–83. https://doi.org/10.3390/microarrays4010064
9. Mazza G., Al-Akkad W., Rombouts K., Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatology Communications, 2018, vol. 2, no. 2, pp. 131–141. https://doi.org/10.1002/hep4.1136
10. Moulisová V., Jiřík M., Schindler C., Červenková L., Pálek R., Rosendorf J., Arlt J., Bolek L., Šůsová S., Nietzsche S., Liška V., Dahmen U. Novel morphological multi-scale evaluation system for quality assessment of decellularized liver scaffolds. Journal of Tissue Engineering, 2020, vol. 11, pp. 1–14. https://doi.org/10.1177/2041731420921121
11. Gilpin A., Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017, vol. 2017, pp. 1–13. https://doi.org/10.1155/2017/9831534
12. Coronado R. E., Somaraki-Cormier M., Natesan S., Christy R. J., Ong J. L., Halff G. A. Decellularization and solubilization of porcine liver for use as a substrate for porcine hepatocyte culture: method optimization and comparison. Cell Transplantation, 2017, vol. 26, no. 12, pp. 1840–1854. https://doi.org/10.1177/0963689717742157
13. Wang Y., Nicolas C. T., Chen H. S., Ross J. J., De Lorenzo S. B., Nyberg S. L. Recent advanced in decellularization and recellularization for tissue-engineered liver grafts. Cells Tissues Organs, 2017, vol. 204, no. 3–4, pp. 125–136. https://doi.org/10.1159/000479597
14. Mendibil U., Ruiz-Hernandez R., Retegi-Carrion S., Garcia-Urquia N., Olalde-Graells B., Abarrategi A. TissueSpecific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. International Journal of Molecular Sciences, 2020, vol. 21, no. 15, pp. 5447. https://doi.org/10.3390/ijms21155447
15. Hussein K. H., Park K. M., Kang K. S., Woo H. M. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Materials Science and Engineering, 2016, no. 67, pp. 766–778. https://doi.org/10.1016/j.msec.2016.05.068