Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

On algebraic points of fixed degree and bounded height

https://doi.org/10.29235/1561-8323-2021-65-5-519-525

Abstract

We consider the spatial distribution of points, whose coordinates are conjugate algebraic numbers of fixed de- gree and bounded height. In the article the main result of a recent joint work by the author and F. Götze, and D. N. Zaporozhets is extended to the case of arbitrary height functions. We prove an asymptotic formula for the number of such algebraic points lying in a given spatial region. We obtain an explicit expression for the density function of algebraic points under an arbitrary height function.

About the Author

D. V. Koleda
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus

Koleda Denis V. – Ph. D. (Physics and Mathematics), Senior researcher

11, Surganov Str., 220072, Minsk



References

1. Chern, S.-J. The distribution of values of Mahler’s measure / S.-J. Chern, J. D. Vaaler // J. Reine Angew. Math. – 2001. – Vol. 540. – P. 1–47. https://doi.org/10.1515/crll.2001.084

2. Masser, D. Counting algebraic numbers with large height. I / D. Masser, J. D. Vaaler // Diophantine approximation. – Vienna, 2008. – Vol. 16. – P. 237–243. https://doi.org/10.1007/978-3-211-74280-8_14

3. Masser, D. Counting algebraic numbers with large height. II / D. Masser, J. D. Vaaler // Trans. Amer. Math. Soc. – 2007. – Vol. 359, N 1. – P. 427–445. https://doi.org/10.1090/s0002-9947-06-04115-8

4. Widmer, M. Counting points of fixed degree and bounded height / M. Widmer // Acta Arith. – 2009. – Vol. 140, N 2. – P. 145–168. https://doi.org/10.4064/aa140-2-4

5. Barroero, F. Counting algebraic integers of fixed degree and bounded height / F. Barroero // Monatsh. Math. – 2014. – Vol. 175, N 1. – P. 25–41. https://doi.org/10.1007/s00605-013-0599-6

6. Grizzard, R. Slicing the stars: counting algebraic numbers, integers, and units by degree and height / R. Grizzard, J. Gunther // Algebra and Number Theory. – 2017. – Vol. 11, N 6. – P. 1385–1436. https://doi.org/10.2140/ant.2017.11.1385

7. Dubickas, A. Algebraic numbers with bounded degree and Weil height / A. Dubickas // Bull. Aust. Math. Soc. – 2018. – Vol. 98, N 2. – P. 212–220. https://doi.org/10.1017/s0004972718000497

8. Bernik, V. I. On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves / V. I. Bernik, F. Götze, A. G. Gusakova // Зап. научн. сем. ПОМИ. – СПб., 2016. – Т. 448. – С. 14–47.

9. Budarina N. V., Dickinson D., Bernik V. I. Lower bounds for the number of vectors with algebraic coordinates near smooth surfaces. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2020, vol. 64, no. 1, pp. 7–12 (in Russian). https://doi.org/10.29235/1561-8323-2020-64-1-7-12

10. Götze, F. Joint distribution of conjugate algebraic numbers: a random polynomial approach / F. Götze, D. Koleda, D. Zaporozhets // Adv. Math. – 2020. – Vol. 359. – Art. 106849. https://doi.org/10.1016/j.aim.2019.106849

11. Tao, T. Local universality of zeroes of random polynomials / T. Tao, V. Vu // Int. Math. Res. Not. – 2015. – Vol. 2015, N 13. – P. 5053–5139. https://doi.org/10.1093/imrn/rnu084


Review

Views: 523


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)