EXTREMAL PROPERTIES OF DIAGONAL HERMITE–PADE APPROXIMANTS OF EXPONENTIAL FUNCTIONS
Abstract
The paper deals with extremal properties of diagonal Hermite-Pad’e approximants of type I for exponential system {eλpz}kp=0with arbitrary λ0, λ1, …, λk. Proved theorems complement known results of P. P. Borwein, F. Wielonsky.
About the Authors
A. V. ASTAFYEVABelarus
A. P. STAROVOITOV
Belarus
References
1. Hermite C. // Ann. Math. Pura. Appl. Ser. 2A 1883. Vol. 21. P. P. 289−308.
2. Hermite C. // C. R. A kad. Sci. (Paris) 1873. Vol. 77. P. P. 18−293.
3. Mahler K. // Comp. Math. 1968. Vol. 19. P. P. 95−166.
4. Mahler K. // J. Reine Angew. Math. 1931. Vol. 166. P. P. 118−150.
5. Aptekarev A. I., Stahl H. Progress in Approximation Theory. New York; Berlin, 1992. P. P. 127−167.
6. Chudnovsky G. V. Lecture Notes in Math. New York; Berlin, 1982. Vol. 925. P. P. 299−322.
7. Borwein P. B. // Const. Approx. 1986. Vol. 62. P. P. 291−302.
8. Wielonsky F. // J. Approx. Theory. 1997. Vol. 90, N 2. P. P. 283−298.
9. Trefethen L. N. // J. Approx. Theory. 1984. Vol. 40, N 4. P. P. 380−384.
10. Braess D. // J. Approx. Theory. 1984. Vol. 40, N 4. P. P. 375−379.
11. Старовойтов А. П. // Проблемы физики, математики и техники. 2013. № 1(14). C. 81−87.
12. Сидоров Ю. В., Федорюк М. В., Шабунин М. И. Лекции по теории функций комплексного переменного. М., 1989.