STRUCTURE OF RAMIFIED DISCRETELY VALUED HENSELIAN DIVISION ALGEBRAS WITH INVOLUTIONS
https://doi.org/10.29235/1561-8323-2018-62-1-7-12
Abstract
The aim of the article is to describe the inner structure of ramified division algebras with second-kind involutions over discretely valued henselian fields as the direct sum of their inertial algebras and special generators from valuation ideals.
About the Authors
Vyacheslav I. YanchevskiiBelarus
Academician, D. Sc. (Physics and Mathematics), Professor, Head of the Department
11, Surganov Str., 220072, Minsk
Alexander A. Ryzhkov
Belarus
Undergraduate
4, Nezavisimosti Ave., 220030, Minsk
References
1. Nakayama T. Divisionsalgebren über diskret bewerteten perfekten Körpern. Journal für die reine und angewandte Mathematik (Crelles Journal), 1938, bd. 178, s. 11–13 (in German). doi.org/10.1515/crll.1938.178.11
2. Witt E. Schiefkörper über diskret bewerteten Körpern. Journal für die reine und angewandte Mathematik (Crelle’s Journal), 1937, vol. 176, pp. 153–156 (in German). doi.org/10.1515/crll.1937.176.153
3. Scharlau W. Über die Brauer-Gruppe eines Hensel-Körpers. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1969, vol. 33, no. 3–4, pp. 243–249 (in German). doi.org/10.1007/bf02992939
4. Jacob B., Wadsworth A. Division algebras over Henselian fields. Journal of Algebra, 1990, vol. 128, no. 1, pp. 126–179. doi.org/10.1016/0021-8693(90)90047-r
5. Platonov V. P., Yanchevskii V. I. Dieudonné’s conjecture on the structure of unitary groups over a division ring, and hermitiank-theory. Mathematics of the USSR – Izvestiya, 1985, vol. 25, no. 3, pp. 573–599. doi.org/10.1070/ IM1985v025n03ABEH001308
6. Jančevskiĭ V. I. Reduced unitaryk-theory and division rings over discretely valued hensel fields. Mathematics of the USSR – Izvestiya, 1979, vol. 13, no. 1, pp. 175–213. doi.org/10.1070/IM1979v013n01ABEH002018
7. Serre J.-P. Galois cohomology. Springer, 1964. 208 p. doi.org/10.1007/978-3-642-59141-9
8. Serre J.-P. Local fields. New York, Berlin, Springer-Verlag, 1979, vol. 67. 249 p. doi.org/10.1007/978-1-4757-5673-9